Question
Evaluate the integral
−320πcos(4x)+160πcos(2x)+C,C∈R
Evaluate
∫40πsin(x)cos(3x)dx
Use the property of integral ∫kf(x)dx=k∫f(x)dx
40π×∫sin(x)cos(3x)dx
Use the property of integral ∫sin(ax)cos(bx)dx=−2(a+b)cos((a+b)x)−2(a−b)cos((a−b)x),a2=b2
40π(−2(1+3)cos((1+3)x)−2(1−3)cos((1−3)x))
Simplify
More Steps

Evaluate
−2(1+3)cos((1+3)x)−2(1−3)cos((1−3)x)
Add the numbers
−2(1+3)cos(4x)−2(1−3)cos((1−3)x)
Subtract the numbers
−2(1+3)cos(4x)−2(1−3)cos(−2x)
Add the numbers
−2×4cos(4x)−2(1−3)cos(−2x)
Subtract the numbers
−2×4cos(4x)−2(−2)cos(−2x)
Multiply the numbers
−8cos(4x)−2(−2)cos(−2x)
Use cos(−t)=cos(t) to transform the expression
−8cos(4x)−2(−2)cos(2x)
Multiply the numbers
More Steps

Evaluate
2(−2)
Multiplying or dividing an odd number of negative terms equals a negative
−2×2
Multiply the numbers
−4
−8cos(4x)−−4cos(2x)
Simplify the expression
−81cos(4x)−−4cos(2x)
Simplify the expression
−81cos(4x)−(−41cos(2x))
Calculate
−81cos(4x)+41cos(2x)
40π(−81cos(4x)+41cos(2x))
Use the the distributive property to expand the expression
40π(−81cos(4x))+40π×41cos(2x)
Multiply the terms
More Steps

Evaluate
40π(−81cos(4x))
Rewrite the expression
−40π×81cos(4x)
Multiply the terms
More Steps

Evaluate
40π×81
To multiply the fractions,multiply the numerators and denominators separately
40×8π
Multiply the numbers
320π
−320πcos(4x)
−320πcos(4x)+40π×41cos(2x)
Multiply the terms
More Steps

Evaluate
40π×41
To multiply the fractions,multiply the numerators and denominators separately
40×4π
Multiply the numbers
160π
−320πcos(4x)+160πcos(2x)
Solution
−320πcos(4x)+160πcos(2x)+C,C∈R
Show Solution
