Question
Evaluate the integral
43x32x+C,C∈R
Evaluate
∫32xdx
Evaluate the power
More Steps

Evaluate
32x
Rewrite the expression
(2x)31
To raise a product to a power,raise each factor to that power
231x31
∫231x31dx
Use the property of integral ∫kf(x)dx=k∫f(x)dx
231×∫x31dx
Use the property of integral ∫xndx=n+1xn+1
231×31+1x31+1
Simplify
More Steps

Evaluate
31+1x31+1
Add the numbers
More Steps

Evaluate
31+1
Write all numerators above the least common denominator 3
31+1×31×3
Calculate
31+33
Add the terms
31+3
Add the terms
34
31+1x34
Add the numbers
More Steps

Evaluate
31+1
Write all numerators above the least common denominator 3
31+1×31×3
Calculate
31+33
Add the terms
31+3
Add the terms
34
34x34
Multiply by the reciprocal
x34×43
Use the commutative property to reorder the terms
43x34
231×43x34
Multiply the numbers
4231×3x34
Simplify
4231×3x34
Transform the expression
More Steps

Evaluate
231×3x34
Use anm=nam to transform the expression
32×3x34
Use anm=nam to transform the expression
32×33x4
Simplify the radical expression
More Steps

Evaluate
3x4
Rewrite the exponent as a sum
3x3+1
Use am+n=am×an to expand the expression
3x3×x
The root of a product is equal to the product of the roots of each factor
3x3×3x
Reduce the index of the radical and exponent with 3
x3x
32×3x3x
Use the commutative property to reorder the terms
3x32x
43x32x
Solution
43x32x+C,C∈R
Show Solution
