Question
Evaluate the integral
24x3x+C,C∈R
Evaluate
∫(4x23(7x×1)×3)dx
Evaluate
∫4x23(7x×1)×3dx
Remove the parentheses
∫4x23×7x×1×3dx
Multiply the terms
More Steps

Multiply the terms
4x23×7x×1×3
Rewrite the expression
4x23×7x×3
Multiply the terms
More Steps

Evaluate
4×7×3
Multiply the terms
28×3
Multiply the numbers
84
84x23×x
Multiply the terms with the same base by adding their exponents
84x23+1
Add the numbers
More Steps

Evaluate
23+1
Write all numerators above the least common denominator 2
23+1×21×2
Calculate
23+22
Add the terms
23+2
Add the terms
25
84x25
∫84x25dx
Use the property of integral ∫kf(x)dx=k∫f(x)dx
84×∫x25dx
Use the property of integral ∫xndx=n+1xn+1
84×25+1x25+1
Simplify
More Steps

Evaluate
25+1x25+1
Add the numbers
More Steps

Evaluate
25+1
Write all numerators above the least common denominator 2
25+1×21×2
Calculate
25+22
Add the terms
25+2
Add the terms
27
25+1x27
Add the numbers
More Steps

Evaluate
25+1
Write all numerators above the least common denominator 2
25+1×21×2
Calculate
25+22
Add the terms
25+2
Add the terms
27
27x27
Multiply by the reciprocal
x27×72
Use the commutative property to reorder the terms
72x27
84×72x27
Multiply the numbers
More Steps

Evaluate
84×72
Reduce the numbers
12×2
Multiply the numbers
24
24x27
Use anm=nam to transform the expression
24x7
Simplify the radical expression
More Steps

Evaluate
x7
Rewrite the exponent as a sum
x6+1
Use am+n=am×an to expand the expression
x6×x
The root of a product is equal to the product of the roots of each factor
x6×x
Reduce the index of the radical and exponent with 2
x3x
24x3x
Solution
24x3x+C,C∈R
Show Solution
