Question
Evaluate the integral
−20t−1001−1001ln(∣t−5∣)−20t+1001+1001ln(∣t+5∣)+C,C∈R
Evaluate
∫(t2−25)25dt
Rewrite the expression
∫5×(t2−25)21dt
Use the property of integral ∫kf(x)dx=k∫f(x)dx
5×∫(t2−25)21dt
Rewrite the fraction
More Steps

Evaluate
(t2−25)21
Rewrite the expression
(t−5)2(t+5)21
For each factor in the denominator,write a new fraction
(t−5)2?+t−5?+(t+5)2?+t+5?
Write the terms in the numerator
(t−5)2A+t−5B+(t+5)2C+t+5D
Set the sum of fractions equal to the original fraction
(t−5)2(t+5)21=(t−5)2A+t−5B+(t+5)2C+t+5D
Multiply both sides
(t−5)2(t+5)21×(t−5)2(t+5)2=(t−5)2A×(t−5)2(t+5)2+t−5B×(t−5)2(t+5)2+(t+5)2C×(t−5)2(t+5)2+t+5D×(t−5)2(t+5)2
Simplify the expression
1=(t2+10t+25)A+(t3+5t2−25t−125)B+(t2−10t+25)C+(t3−5t2−25t+125)D
Simplify the expression
More Steps

Evaluate
(t2+10t+25)A+(t3+5t2−25t−125)B+(t2−10t+25)C+(t3−5t2−25t+125)D
Apply the distributive property
t2A+10tA+25A+(t3+5t2−25t−125)B+(t2−10t+25)C+(t3−5t2−25t+125)D
Apply the distributive property
t2A+10tA+25A+t3B+5t2B−25tB−125B+(t2−10t+25)C+(t3−5t2−25t+125)D
Apply the distributive property
t2A+10tA+25A+t3B+5t2B−25tB−125B+t2C−10tC+25C+(t3−5t2−25t+125)D
Apply the distributive property
t2A+10tA+25A+t3B+5t2B−25tB−125B+t2C−10tC+25C+t3D−5t2D−25tD+125D
1=t2A+10tA+25A+t3B+5t2B−25tB−125B+t2C−10tC+25C+t3D−5t2D−25tD+125D
Group the terms
1=(B+D)t3+(A+5B+C−5D)t2+(10A−25B−10C−25D)t+25A−125B+25C+125D
Equate the coefficients
⎩⎨⎧0=B+D0=A+5B+C−5D0=10A−25B−10C−25D1=25A−125B+25C+125D
Swap the sides
⎩⎨⎧B+D=0A+5B+C−5D=010A−25B−10C−25D=025A−125B+25C+125D=1
Solve the equation for B
More Steps

Evaluate
B+D=0
Move the expression to the right-hand side and change its sign
B=0−D
Removing 0 doesn't change the value,so remove it from the expression
B=−D
⎩⎨⎧B=−DA+5B+C−5D=010A−25B−10C−25D=025A−125B+25C+125D=1
Substitute the given value of B into the equation ⎩⎨⎧A+5B+C−5D=010A−25B−10C−25D=025A−125B+25C+125D=1
⎩⎨⎧A+5(−D)+C−5D=010A−25(−D)−10C−25D=025A−125(−D)+25C+125D=1
Simplify
⎩⎨⎧A−10D+C=010A−25(−D)−10C−25D=025A−125(−D)+25C+125D=1
Simplify
⎩⎨⎧A−10D+C=010A−10C=025A−125(−D)+25C+125D=1
Simplify
⎩⎨⎧A−10D+C=010A−10C=025A+250D+25C=1
Solve the equation for A
More Steps

Evaluate
A−10D+C=0
Move the expression to the right-hand side and change its sign
A=0−(−10D+C)
Subtract the terms
A=10D−C
⎩⎨⎧A=10D−C10A−10C=025A+250D+25C=1
Substitute the given value of A into the equation {10A−10C=025A+250D+25C=1
{10(10D−C)−10C=025(10D−C)+250D+25C=1
Simplify
{100D−20C=025(10D−C)+250D+25C=1
Simplify
{100D−20C=0500D=1
Solve the equation for D
More Steps

Evaluate
500D=1
Divide both sides
500500D=5001
Divide the numbers
D=5001
{100D−20C=0D=5001
Substitute the given value of D into the equation 100D−20C=0
100×5001−20C=0
Multiply the numbers
51−20C=0
Move the constant to the right-hand side and change its sign
−20C=0−51
Removing 0 doesn't change the value,so remove it from the expression
−20C=−51
Change the signs on both sides of the equation
20C=51
Multiply by the reciprocal
20C×201=51×201
Multiply
C=51×201
Multiply
More Steps

Evaluate
51×201
To multiply the fractions,multiply the numerators and denominators separately
5×201
Multiply the numbers
1001
C=1001
Substitute the given values of D,C into the equation A=10D−C
A=10×5001−1001
Simplify the expression
A=10×500−1−100−1
Calculate
A=1001
Substitute the given value of D into the equation B=−D
B=−5001
Calculate
⎩⎨⎧A=1001B=−5001C=1001D=5001
Substitute back
100(t−5)21−500t−25001+100(t+5)21+500t+25001
5×∫(100(t−5)21−500t−25001+100(t+5)21+500t+25001)dt
Use the property of integral ∫f(x)±g(x)dx=∫f(x)dx±∫g(x)dx
5(∫100(t−5)21dt+∫−500t−25001dt+∫100(t+5)21dt+∫500t+25001dt)
Calculate
5×∫100(t−5)21dt+5×∫−500t−25001dt+5×∫100(t+5)21dt+5×∫500t+25001dt
Evaluate the integral
More Steps

Evaluate
5×∫100(t−5)21dt
Rewrite the expression
5×∫1001×(t−5)21dt
Use the property of integral ∫kf(x)dx=k∫f(x)dx
5×1001×∫(t−5)21dt
Multiply the numbers
More Steps

Evaluate
5×1001
Reduce the numbers
1×201
Multiply the numbers
201
201×∫(t−5)21dt
Use the substitution dt=1dv to transform the integral
More Steps

Evaluate
v=t−5
Calculate the derivative
dv=1dt
Evaluate
dt=1dv
201×∫(t−5)21×1dv
Simplify
201×∫(t−5)21dv
Use the substitution v=t−5 to transform the integral
201×∫v21dv
Use the property of integral ∫xndx=n+1xn+1
201×−2+1v−2+1
Simplify
More Steps

Evaluate
−2+1v−2+1
Add the numbers
−2+1v−1
Add the numbers
−1v−1
201×−1v−1
Rewrite the expression
201(−v−1)
Multiplying or dividing an odd number of negative terms equals a negative
−201v−1
Multiply the terms
−20v−1
Simplify
−20v1
Substitute back
−20(t−5)1
Multiply the terms
More Steps

Evaluate
20(t−5)
Apply the distributive property
20t−20×5
Multiply the numbers
20t−100
−20t−1001
−20t−1001+5×∫−500t−25001dt+5×∫100(t+5)21dt+5×∫500t+25001dt
Evaluate the integral
More Steps

Evaluate
5×∫−500t−25001dt
Rewrite the expression
5×∫−5001×t−51dt
Use the property of integral ∫kf(x)dx=k∫f(x)dx
5(−5001)×∫t−51dt
Multiply the numbers
More Steps

Evaluate
5(−5001)
Multiplying or dividing an odd number of negative terms equals a negative
−5×5001
Reduce the numbers
−1×1001
Multiply the numbers
−1001
−1001×∫t−51dt
Use the property of integral ∫ax+b1dx=a1ln∣ax+b∣
−1001ln(∣t−5∣)
−20t−1001−1001ln(∣t−5∣)+5×∫100(t+5)21dt+5×∫500t+25001dt
Evaluate the integral
More Steps

Evaluate
5×∫100(t+5)21dt
Rewrite the expression
5×∫1001×(t+5)21dt
Use the property of integral ∫kf(x)dx=k∫f(x)dx
5×1001×∫(t+5)21dt
Multiply the numbers
More Steps

Evaluate
5×1001
Reduce the numbers
1×201
Multiply the numbers
201
201×∫(t+5)21dt
Use the substitution dt=1dv to transform the integral
More Steps

Evaluate
v=t+5
Calculate the derivative
dv=1dt
Evaluate
dt=1dv
201×∫(t+5)21×1dv
Simplify
201×∫(t+5)21dv
Use the substitution v=t+5 to transform the integral
201×∫v21dv
Use the property of integral ∫xndx=n+1xn+1
201×−2+1v−2+1
Simplify
More Steps

Evaluate
−2+1v−2+1
Add the numbers
−2+1v−1
Add the numbers
−1v−1
201×−1v−1
Rewrite the expression
201(−v−1)
Multiplying or dividing an odd number of negative terms equals a negative
−201v−1
Multiply the terms
−20v−1
Simplify
−20v1
Substitute back
−20(t+5)1
Multiply the terms
More Steps

Evaluate
20(t+5)
Apply the distributive property
20t+20×5
Multiply the numbers
20t+100
−20t+1001
−20t−1001−1001ln(∣t−5∣)−20t+1001+5×∫500t+25001dt
Evaluate the integral
More Steps

Evaluate
5×∫500t+25001dt
Rewrite the expression
5×∫5001×t+51dt
Use the property of integral ∫kf(x)dx=k∫f(x)dx
5×5001×∫t+51dt
Multiply the numbers
More Steps

Evaluate
5×5001
Reduce the numbers
1×1001
Multiply the numbers
1001
1001×∫t+51dt
Use the property of integral ∫ax+b1dx=a1ln∣ax+b∣
1001ln(∣t+5∣)
−20t−1001−1001ln(∣t−5∣)−20t+1001+1001ln(∣t+5∣)
Solution
−20t−1001−1001ln(∣t−5∣)−20t+1001+1001ln(∣t+5∣)+C,C∈R
Show Solution
