Question
Evaluate the integral
18e3+5
Alternative Form
≈1.393641
Evaluate
∫01∫3y3y×yexydxdy
Multiply the terms
∫01∫3y3y2exydxdy
To evaluate the iterated inter,first evaluate the inner integral
More Steps

Evaluate
∫3y3y2exydx
Evaluate the indefinite integral
∫3y3y2eyxdx
Evaluate the integral
∫y2eyxdx
Use the property of integral ∫kf(x)dx=k∫f(x)dx
y2×∫eyxdx
Use the property of integral ∫eax=a1eax
y2×y1×eyx
Multiply the terms
y2×yeyx
Cancel out the common factor y
yeyx
Return the limits
(yeyx)3y3
Calculate the value
More Steps

Substitute the values into formula
yey×3−yey×3y
Use the commutative property to reorder the terms
ye3y−yey×3y
Multiply the terms
ye3y−ye3y2
ye3y−ye3y2
∫01(ye3y−ye3y2)dy
Evaluate the integral
∫(ye3y−ye3y2)dy
Use the property of integral ∫f(x)±g(x)dx=∫f(x)dx±∫g(x)dx
∫ye3ydy+∫−ye3y2dy
Evaluate the integral
More Steps

Evaluate
∫ye3ydy
Prepare for integration by parts
u=ydv=e3ydy
Calculate the derivative
More Steps

Calculate the derivative
u=y
Evaluate the derivative
du=y′dy
Evaluate the derivative
du=1dy
Simplify the expression
du=dy
du=dydv=e3ydy
Evaluate the integral
More Steps

Evaluate the integral
dv=e3ydy
Evaluate the integral
∫1dv=∫e3ydy
Evaluate the integral
v=3e3y
du=dyv=3e3y
Substitute u=y、v=3e3y、du=dy、dv=e3ydy for ∫udv=uv−∫vdu
y×3e3y−∫1×3e3ydy
Calculate
3ye3y−∫3e3ydy
Evaluate the integral
More Steps

Evaluate the integral
−∫3e3ydy
Rewrite the expression
−∫31e3ydy
Use the property of integral ∫kf(x)dx=k∫f(x)dx
−31×∫e3ydy
Use the property of integral ∫eax=a1eax
−31×31e3y
Multiply the terms
−31×3e3y
Multiply the terms
−3×3e3y
Multiply the terms
−9e3y
3ye3y−9e3y
3ye3y−9e3y+∫−ye3y2dy
Evaluate the integral
More Steps

Evaluate
∫−ye3y2dy
Use the property of integral ∫kf(x)dx=k∫f(x)dx
−∫ye3y2dy
Use the substitution dy=6y1dt to transform the integral
More Steps

Evaluate
t=3y2
Calculate the derivative
dt=6ydy
Evaluate
dy=6y1dt
−∫ye3y2×6y1dt
Simplify
More Steps

Multiply the terms
ye3y2×6y1
Cancel out the common factor y
e3y2×61
Multiply the terms
6e3y2
−∫6e3y2dt
Use the substitution t=3y2 to transform the integral
−∫6etdt
Rewrite the expression
−∫61etdt
Use the property of integral ∫kf(x)dx=k∫f(x)dx
−61×∫etdt
Use the property of integral ∫exdx=ex
−61et
Multiply the terms
−6et
Substitute back
−6e3y2
3ye3y−9e3y−6e3y2
Simplify the expression
3e3yy−9e3y−6e3y2
Return the limits
(3e3yy−9e3y−6e3y2)01
Solution
More Steps

Substitute the values into formula
3e3×1×1−9e3×1−6e3×12−(3e3×0×0−9e3×0−6e3×02)
Any expression multiplied by 0 equals 0
3e3×1×1−9e3×1−6e3×12−(3e0×0−9e3×0−6e3×02)
Evaluate the power
3e3×1×1−9e3×1−6e3×12−(31×0−9e3×0−6e3×02)
Any expression multiplied by 0 equals 0
3e3×1×1−9e3×1−6e3×12−(31×0−9e0−6e3×02)
Any expression multiplied by 0 equals 0
3e3×1×1−9e3×1−6e3×12−(30−9e0−6e3×02)
Evaluate the power
3e3×1×1−9e3×1−6e3×12−(30−91−6e3×02)
Calculate
3e3×1×1−9e3×1−6e3×12−(30−91−6e3×0)
Any expression multiplied by 1 remains the same
3e3×1−9e3×1−6e3×12−(30−91−6e3×0)
1 raised to any power equals to 1
3e3×1−9e3×1−6e3×1−(30−91−6e3×0)
Any expression multiplied by 0 equals 0
3e3×1−9e3×1−6e3×1−(30−91−6e0)
Any expression multiplied by 1 remains the same
3e3×1−9e3−6e3×1−(30−91−6e0)
Any expression multiplied by 1 remains the same
3e3×1−9e3−6e3−(30−91−6e0)
Evaluate the power
3e3×1−9e3−6e3−(30−91−61)
Any expression multiplied by 1 remains the same
3e3−9e3−6e3−(30−91−61)
Divide the terms
3e3−9e3−6e3−(0−91−61)
Subtract the numbers
More Steps

Evaluate
0−91−61
Removing 0 doesn't change the value,so remove it from the expression
−91−61
Write all numerators above the least common denominator 18
−9×22−6×33
Calculate
−182−183
Subtract the terms
18−2−3
Subtract the terms
18−5
Rewrite the fraction
−185
3e3−9e3−6e3−(−185)
Subtract the numbers
More Steps

Evaluate
3e3−9e3
Write all numerators above the least common denominator 9
3×3e3×3−9e3
Calculate
93e3−9e3
Subtract the terms
93e3−e3
Subtract the terms
92e3
92e3−6e3−(−185)
Subtract the numbers
More Steps

Evaluate
92e3−6e3
Write all numerators above the least common denominator 18
9×22e3×2−6×3e3×3
Calculate
184e3−183e3
Subtract the terms
184e3−3e3
Subtract the terms
18e3
18e3−(−185)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
18e3+185
Add the terms
18e3+5
18e3+5
Alternative Form
≈1.393641
Show Solution
