Question
Evaluate the integral
66e−7
Alternative Form
≈1.551615
Evaluate
∫01(ex−x5)dx
Evaluate the integral
∫(ex−x5)dx
Use the property of integral ∫f(x)±g(x)dx=∫f(x)dx±∫g(x)dx
∫exdx+∫−x5dx
Use the property of integral ∫exdx=ex
ex+∫−x5dx
Evaluate the integral
More Steps

Evaluate
∫−x5dx
Use the property of integral ∫kf(x)dx=k∫f(x)dx
−∫x5dx
Use the property of integral ∫xndx=n+1xn+1
−5+1x5+1
Simplify
More Steps

Evaluate
5+1x5+1
Add the numbers
5+1x6
Add the numbers
6x6
−6x6
ex−6x6
Return the limits
(ex−6x6)01
Solution
More Steps

Substitute the values into formula
e1−616−(e0−606)
Evaluate the power
e1−616−(1−606)
Calculate
e1−616−(1−60)
1 raised to any power equals to 1
e1−61−(1−60)
Divide the terms
e1−61−(1−0)
Evaluate the power
e−61−(1−0)
Removing 0 doesn't change the value,so remove it from the expression
e−61−1
Subtract the numbers
More Steps

Evaluate
e−61
Write all numerators above the least common denominator 6
1×6e×6−61
Calculate
66e−61
Subtract the terms
66e−1
66e−1−1
Write all numerators above the least common denominator 6
66e−1−1×66
Calculate
66e−1−66
Subtract the terms
66e−1−6
Subtract the terms
66e−7
66e−7
Alternative Form
≈1.551615
Show Solution
