Question
Evaluate the integral
2e2t−1+e4t
Evaluate
∫0t2e2t−4udu
Evaluate the integral
∫2e2t−4udu
Use the property of integral ∫kf(x)dx=k∫f(x)dx
2×∫e2t−4udu
Use the substitution du=−41dt to transform the integral
More Steps

Evaluate
t=2t−4u
Calculate the derivative
dt=−4du
Evaluate
du=−41dt
2×∫e2t−4u(−41)dt
Simplify
More Steps

Evaluate
e2t−4u(−41)
Multiplying or dividing an odd number of negative terms equals a negative
−e2t−4u×41
Multiply the terms
−4e2t−4u
2×∫−4e2t−4udt
Use the substitution t=2t−4u to transform the integral
2×∫4−etdt
Simplify the expression
2×∫−4etdt
Rewrite the expression
2×∫−41etdt
Use the property of integral ∫kf(x)dx=k∫f(x)dx
2(−41)×∫etdt
Multiply the numbers
More Steps

Evaluate
2(−41)
Multiplying or dividing an odd number of negative terms equals a negative
−2×41
Reduce the numbers
−1×21
Multiply the numbers
−21
−21×∫etdt
Use the property of integral ∫exdx=ex
−21et
Multiply the terms
−2et
Substitute back
−2e2t−4u
Return the limits
(−2e2t−4u)0t
Calculate the value
More Steps

Substitute the values into formula
−2e2t−4t−(−2e2t−4×0)
Any expression multiplied by 0 equals 0
−2e2t−4t−(−2e2t−0)
Subtract the terms
More Steps

Evaluate
2t−4t
Collect like terms by calculating the sum or difference of their coefficients
(2−4)t
Subtract the numbers
−2t
−2e−2t−(−2e2t−0)
Removing 0 doesn't change the value,so remove it from the expression
−2e−2t−(−2e2t)
Simplify the expression
−2e2t1−(−2e2t)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−2e2t1+2e2t
−2e2t1+2e2t
Reduce fractions to a common denominator
−2e2t1+2e2te2t×e2t
Write all numerators above the common denominator
2e2t−1+e2t×e2t
Solution
More Steps

Evaluate
e2t×e2t
Multiply the terms with the same base by adding their exponents
e2t+2t
Calculate
e4t
2e2t−1+e4t
Show Solution
