Question
Evaluate the integral
21
Alternative Form
0.5
Evaluate
∫1exln(x)dx
Evaluate the integral
∫xln(x)dx
Use the substitution dx=xdt to transform the integral
More Steps

Evaluate
t=ln(x)
Calculate the derivative
dt=x1dx
Evaluate
dx=xdt
∫xln(x)×xdt
Simplify
More Steps

Multiply the terms
xln(x)×x
Cancel out the common factor x
ln(x)×1
Multiply the terms
ln(x)
∫ln(x)dt
Use the substitution t=ln(x) to transform the integral
∫tdt
Use the property of integral ∫xndx=n+1xn+1
1+1t1+1
Add the numbers
1+1t2
Add the numbers
2t2
Substitute back
2(ln(x))2
Simplify the expression
21(ln(x))2
Return the limits
(21(ln(x))2)1e
Solution
More Steps

Substitute the values into formula
21(ln(e))2−21(ln(1))2
A logarithm with the same base and argument equals 1
21×12−21(ln(1))2
Evaluate the logarithm
21×12−21×02
1 raised to any power equals to 1
21×1−21×02
Calculate
21×1−21×0
Any expression multiplied by 1 remains the same
21−21×0
Any expression multiplied by 0 equals 0
21−0
Removing 0 doesn't change the value,so remove it from the expression
21
21
Alternative Form
0.5
Show Solution
