Question
Evaluate the integral
a2u−3u3+C,C∈R
Evaluate
∫(a2−u2×1)du
Any expression multiplied by 1 remains the same
∫(a2−u2)du
Rewrite the expression
∫−(−a2+u2)du
Use the property of integral ∫kf(x)dx=k∫f(x)dx
−∫(−a2+u2)du
Use the property of integral ∫f(x)±g(x)dx=∫f(x)dx±∫g(x)dx
−(∫−a2du+∫u2du)
Calculate
−∫−a2du−∫u2du
Evaluate the integral
More Steps

Evaluate
−∫−a2du
Use the property of integral ∫kdx=kx
−(−a2u)
Calculate
a2u
a2u−∫u2du
Evaluate the integral
More Steps

Evaluate
−∫u2du
Use the property of integral ∫xndx=n+1xn+1
−2+1u2+1
Simplify
More Steps

Evaluate
2+1u2+1
Add the numbers
2+1u3
Add the numbers
3u3
−3u3
a2u−3u3
Solution
a2u−3u3+C,C∈R
Show Solution
