Question
Evaluate the integral
3221x21x11+C,C∈R
Evaluate
∫x31(1×x34)71dx
Any expression multiplied by 1 remains the same
∫x31(x34)71dx
Evaluate the power
More Steps

Evaluate
(x34)71
Transform the expression
x34×71
Multiply the numbers
More Steps

Evaluate
34×71
To multiply the fractions,multiply the numerators and denominators separately
3×74
Multiply the numbers
214
x214
∫x31×x214dx
Multiply the terms
More Steps

Evaluate
x31×x214
Use the product rule an×am=an+m to simplify the expression
x31+214
Add the numbers
More Steps

Evaluate
31+214
Write all numerators above the least common denominator 21
3×71×7+214
Calculate
217+214
Add the terms
217+4
Add the terms
2111
x2111
∫x2111dx
Use the property of integral ∫xndx=n+1xn+1
2111+1x2111+1
Add the numbers
More Steps

Evaluate
2111+1
Write all numerators above the least common denominator 21
2111+1×211×21
Calculate
2111+2121
Add the terms
2111+21
Add the terms
2132
2111+1x2132
Add the numbers
More Steps

Evaluate
2111+1
Write all numerators above the least common denominator 21
2111+1×211×21
Calculate
2111+2121
Add the terms
2111+21
Add the terms
2132
2132x2132
Multiply by the reciprocal
x2132×3221
Use the commutative property to reorder the terms
3221x2132
Use anm=nam to transform the expression
322121x32
Simplify the radical expression
More Steps

Evaluate
21x32
Rewrite the exponent as a sum
21x21+11
Use am+n=am×an to expand the expression
21x21×x11
The root of a product is equal to the product of the roots of each factor
21x21×21x11
Reduce the index of the radical and exponent with 21
x21x11
3221x21x11
Solution
3221x21x11+C,C∈R
Show Solution
