Question
Evaluate the integral
Diverges
Evaluate
∫−(+∞)+∞x−3dx
Evaluate
∫−∞+∞x−3dx
Use function domain and discontinuity points to transform the expression with the formula ∫acf(x)dx=∫abf(x)dx+∫bcf(x)dx
∫−∞−1x−3dx+∫−10x−3dx+∫01x−3dx+∫1+∞x−3dx
By definition,rewrite the improper integral using one-sided limit and a definite integral
a→−∞lim(∫a−1x−3dx)+∫−10x−3dx+∫01x−3dx+∫1+∞x−3dx
By definition,rewrite the improper integral using one-sided limit and a definite integral
a→−∞lim(∫a−1x−3dx)+a→0−lim(∫−1ax−3dx)+∫01x−3dx+∫1+∞x−3dx
By definition,rewrite the improper integral using one-sided limit and a definite integral
a→−∞lim(∫a−1x−3dx)+a→0−lim(∫−1ax−3dx)+a→0+lim(∫a1x−3dx)+∫1+∞x−3dx
By definition,rewrite the improper integral using one-sided limit and a definite integral
a→−∞lim(∫a−1x−3dx)+a→0−lim(∫−1ax−3dx)+a→0+lim(∫a1x−3dx)+a→+∞lim(∫1ax−3dx)
Evaluate the integral
More Steps

Evaluate
∫a−1x−3dx
Evaluate the integral
∫x−3dx
Rewrite the expression
∫x31dx
Use the property of integral ∫xndx=n+1xn+1
−3+1x−3+1
Add the numbers
−3+1x−2
Add the numbers
−2x−2
Use b−a=−ba=−ba to rewrite the fraction
−2x−2
Express with a positive exponent using a−n=an1
−2x21
Simplify
−2x21
Return the limits
(−2x21)a−1
Substitute the values into formula
−2(−1)21−(−2a21)
Evaluate the power
−2×11−(−2a21)
Reduce the fraction
−21−(−2a21)
Subtract the terms
−21+2a21
a→−∞lim(−21+2a21)+a→0−lim(∫−1ax−3dx)+a→0+lim(∫a1x−3dx)+a→+∞lim(∫1ax−3dx)
Evaluate the integral
More Steps

Evaluate
∫−1ax−3dx
Evaluate the integral
∫x−3dx
Rewrite the expression
∫x31dx
Use the property of integral ∫xndx=n+1xn+1
−3+1x−3+1
Add the numbers
−3+1x−2
Add the numbers
−2x−2
Use b−a=−ba=−ba to rewrite the fraction
−2x−2
Express with a positive exponent using a−n=an1
−2x21
Simplify
−2x21
Return the limits
(−2x21)−1a
Substitute the values into formula
−2a21−(−2(−1)21)
Rewrite the expression
−2a21+2(−1)21
Evaluate the power
−2a21+2×11
Reduce the fraction
−2a21+21
a→−∞lim(−21+2a21)+a→0−lim(−2a21+21)+a→0+lim(∫a1x−3dx)+a→+∞lim(∫1ax−3dx)
Evaluate the integral
More Steps

Evaluate
∫a1x−3dx
Evaluate the integral
∫x−3dx
Rewrite the expression
∫x31dx
Use the property of integral ∫xndx=n+1xn+1
−3+1x−3+1
Add the numbers
−3+1x−2
Add the numbers
−2x−2
Use b−a=−ba=−ba to rewrite the fraction
−2x−2
Express with a positive exponent using a−n=an1
−2x21
Simplify
−2x21
Return the limits
(−2x21)a1
Substitute the values into formula
−2×121−(−2a21)
1 raised to any power equals to 1
−2×11−(−2a21)
Reduce the fraction
−21−(−2a21)
Subtract the terms
−21+2a21
a→−∞lim(−21+2a21)+a→0−lim(−2a21+21)+a→0+lim(−21+2a21)+a→+∞lim(∫1ax−3dx)
Evaluate the integral
More Steps

Evaluate
∫1ax−3dx
Evaluate the integral
∫x−3dx
Rewrite the expression
∫x31dx
Use the property of integral ∫xndx=n+1xn+1
−3+1x−3+1
Add the numbers
−3+1x−2
Add the numbers
−2x−2
Use b−a=−ba=−ba to rewrite the fraction
−2x−2
Express with a positive exponent using a−n=an1
−2x21
Simplify
−2x21
Return the limits
(−2x21)1a
Substitute the values into formula
−2a21−(−2×121)
Rewrite the expression
−2a21+2×121
1 raised to any power equals to 1
−2a21+2×11
Reduce the fraction
−2a21+21
a→−∞lim(−21+2a21)+a→0−lim(−2a21+21)+a→0+lim(−21+2a21)+a→+∞lim(−2a21+21)
Evaluate the limit
More Steps

Evaluate
a→−∞lim(−21+2a21)
Rewrite the expression
a→−∞lim(−21)+a→−∞lim(2a21)
Calculate
−21+a→−∞lim(2a21)
Calculate
More Steps

Evaluate
a→−∞lim(2a21)
Rewrite the expression
lima→−∞(2a2)1
Calculate
+∞1
Calculate
0
−21+0
Calculate
−21
−21+a→0−lim(−2a21+21)+a→0+lim(−21+2a21)+a→+∞lim(−2a21+21)
Evaluate the limit
More Steps

Evaluate
a→0−lim(−2a21+21)
Rewrite the expression
a→0−lim(−2a21)+a→0−lim(21)
Calculate
More Steps

Evaluate
a→0−lim(−2a21)
Use b−a=−ba=−ba to rewrite the fraction
a→0−lim(2a2−1)
Calculate
−∞
(−∞)+a→0−lim(21)
Calculate
(−∞)+21
Calculate
−∞
−21+(−∞)+a→0+lim(−21+2a21)+a→+∞lim(−2a21+21)
Evaluate the limit
More Steps

Evaluate
a→0+lim(−21+2a21)
Rewrite the expression
a→0+lim(−21)+a→0+lim(2a21)
Calculate
−21+a→0+lim(2a21)
Calculate
−21+(+∞)
Calculate
+∞
−21+(−∞)+(+∞)+a→+∞lim(−2a21+21)
Evaluate the limit
More Steps

Evaluate
a→+∞lim(−2a21+21)
Rewrite the expression
a→+∞lim(−2a21)+a→+∞lim(21)
Calculate
More Steps

Evaluate
a→+∞lim(−2a21)
Rewrite the expression
−a→+∞lim(2a21)
Calculate
0
0+a→+∞lim(21)
Calculate
0+21
Calculate
21
−21+(−∞)+(+∞)+21
Solution
Diverges
Show Solution
