Question
Evaluate the integral
2−1+2ln(3)
Alternative Form
≈0.598612
Evaluate
∫021(−1+1+x1+1−x1)dx
Evaluate the integral
∫(−1+1+x1+1−x1)dx
Use the property of integral ∫f(x)±g(x)dx=∫f(x)dx±∫g(x)dx
∫−1dx+∫1+x1dx+∫1−x1dx
Use the property of integral ∫kdx=kx
−x+∫1+x1dx+∫1−x1dx
Use the property of integral ∫ax+b1dx=a1ln∣ax+b∣
−x+ln(∣x+1∣)+∫1−x1dx
Evaluate the integral
More Steps

Evaluate
∫1−x1dx
Rewrite the expression
∫−−1+x1dx
Use the property of integral ∫kf(x)dx=k∫f(x)dx
−11×∫−1+x1dx
Multiply the numbers
More Steps

Evaluate
1×(−11)
Any expression multiplied by 1 remains the same
−11
Rewrite the expression
−1
−∫−1+x1dx
Use the property of integral ∫ax+b1dx=a1ln∣ax+b∣
−ln(∣x−1∣)
−x+ln(∣x+1∣)−ln(∣x−1∣)
Use logax−logay=logayx to transform the expression
−x+ln(∣x−1∣∣x+1∣)
Return the limits
(−x+ln(∣x−1∣∣x+1∣))021
Solution
More Steps

Substitute the values into formula
−21+ln(21−121+1)−(−0+ln(∣0−1∣∣0+1∣))
Evaluate
−21+ln(21−121+1)−(0+ln(∣0−1∣∣0+1∣))
Removing 0 doesn't change the value,so remove it from the expression
−21+ln(21−121+1)−(0+ln(∣0−1∣∣1∣))
Removing 0 doesn't change the value,so remove it from the expression
−21+ln(21−121+1)−(0+ln(∣−1∣∣1∣))
Add the numbers
More Steps

Evaluate
21+1
Write all numerators above the least common denominator 2
21+1×21×2
Calculate
21+22
Add the terms
21+2
Add the terms
23
−21+ln(21−123)−(0+ln(∣−1∣∣1∣))
Subtract the numbers
More Steps

Evaluate
21−1
Write all numerators above the least common denominator 2
21−1×22
Calculate
21−22
Subtract the terms
21−2
Subtract the terms
2−1
Rewrite the fraction
−21
−21+ln(−2123)−(0+ln(∣−1∣∣1∣))
When the expression in absolute value bars is not negative, remove the bars
−21+ln(−2123)−(0+ln(∣−1∣1))
Since −1<0,the absolute value of −1 is 1
−21+ln(−2123)−(0+ln(11))
When the expression in absolute value bars is not negative, remove the bars
−21+ln(−2123)−(0+ln(11))
Since −21<0,the absolute value of −21 is 21
−21+ln(2123)−(0+ln(11))
Divide the terms
−21+ln(2123)−(0+ln(1))
Divide the terms
More Steps

Evaluate
2123
Multiply by the reciprocal
23×2
Reduce the numbers
3×1
Simplify
3
−21+ln(3)−(0+ln(1))
Evaluate the logarithm
−21+ln(3)−(0+0)
Removing 0 doesn't change the value,so remove it from the expression
−21+ln(3)−0
Removing 0 doesn't change the value,so remove it from the expression
−21+ln(3)
Simplify
2−1+2ln(3)
2−1+2ln(3)
Alternative Form
≈0.598612
Show Solution
