Question
Evaluate the integral
192π
Alternative Form
≈603.185789
Evaluate
∫04π(3x)2dx
Multiply the terms
More Steps

Evaluate
π(3x)2
Rewrite the expression
π×9x2
Use the commutative property to reorder the terms
9πx2
∫049πx2dx
Evaluate the integral
∫9πx2dx
Use the property of integral ∫kf(x)dx=k∫f(x)dx
9π×∫x2dx
Use the property of integral ∫xndx=n+1xn+1
9π×2+1x2+1
Simplify
More Steps

Evaluate
2+1x2+1
Add the numbers
2+1x3
Add the numbers
3x3
9π×3x3
Cancel out the common factor 3
3πx3
Return the limits
(3πx3)04
Solution
More Steps

Substitute the values into formula
3π×43−3π×03
Calculate
3π×43−3π×0
Multiply the terms
More Steps

Evaluate
3×43
Evaluate the power
3×64
Multiply the numbers
192
192π−3π×0
Any expression multiplied by 0 equals 0
192π−0
Removing 0 doesn't change the value,so remove it from the expression
192π
192π
Alternative Form
≈603.185789
Show Solution
