Question
Evaluate the integral
31a3
Evaluate
∫0axa2−x2dx
Simplify
∫0ax(a2−x2)21dx
Evaluate the integral
∫x(a2−x2)21dx
Use the substitution dx=−2x1dt to transform the integral
More Steps

Evaluate
t=−x2
Calculate the derivative
dt=−2xdx
Evaluate
dx=−2x1dt
∫x(a2−x2)21(−2x1)dt
Simplify
More Steps

Evaluate
x(a2−x2)21(−2x1)
Multiplying or dividing an odd number of negative terms equals a negative
−x(a2−x2)21×2x1
Cancel out the common factor x
−(a2−x2)21×21
Multiply the terms
−2(a2−x2)21
∫−2(a2−x2)21dt
Use the substitution t=−x2 to transform the integral
∫2−(a2+t)21dt
Rewrite the expression
∫21(−(a2+t)21)dt
Use the property of integral ∫kf(x)dx=k∫f(x)dx
21×∫−(a2+t)21dt
Use the substitution dt=1dv to transform the integral
More Steps

Evaluate
v=a2+t
Calculate the derivative
dv=1dt
Evaluate
dt=1dv
21×∫−(a2+t)21×1dv
Any expression multiplied by 1 remains the same
21×∫−(a2+t)21dv
Use the substitution v=a2+t to transform the integral
21×∫−v21dv
Use the property of integral ∫kf(x)dx=k∫f(x)dx
21(−1)×∫v21dv
Multiplying or dividing an odd number of negative terms equals a negative
−21×∫v21dv
Use the property of integral ∫xndx=n+1xn+1
−21×21+1v21+1
Simplify
More Steps

Evaluate
21+1v21+1
Add the numbers
More Steps

Evaluate
21+1
Write all numerators above the least common denominator 2
21+1×21×2
Calculate
21+22
Add the terms
21+2
Add the terms
23
21+1v23
Add the numbers
More Steps

Evaluate
21+1
Write all numerators above the least common denominator 2
21+1×21×2
Calculate
21+22
Add the terms
21+2
Add the terms
23
23v23
−21×23v23
Multiply the terms
−2×23v23
Multiply the terms
More Steps

Evaluate
2×23
Reduce the numbers
1×3
Simplify
3
−3v23
Substitute back
−3(a2+t)23
Substitute back
−3(a2−x2)23
Simplify
−31(a2−x2)23
Return the limits
(−31(a2−x2)23)0a
Solution
More Steps

Substitute the values into formula
−31(a2−a2)23−(−31(a2−02)23)
Subtract the terms
−31×023−(−31(a2−02)23)
Calculate
−31×0−(−31(a2−02)23)
Calculate
−31×0−(−31(a2−0)23)
Removing 0 doesn't change the value,so remove it from the expression
−31×0−(−31(a2)23)
Evaluate the power
More Steps

Evaluate
(a2)23
Transform the expression
a2×23
Multiply the numbers
a3
−31×0−(−31a3)
Any expression multiplied by 0 equals 0
0−(−31a3)
Removing 0 doesn't change the value,so remove it from the expression
−(−31a3)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
31a3
31a3
Show Solution
