Question
Evaluate the integral
1546−303
Alternative Form
≈−0.397435
Evaluate
∫02(57−y−3−y)dy
Simplify the expression
∫02(57−51y−3−y)dy
Evaluate the integral
∫(57−51y−3−y)dy
Rewrite the expression
∫51(7−y−53−y)dy
Use the property of integral ∫kf(x)dx=k∫f(x)dx
51×∫(7−y−53−y)dy
Use the property of integral ∫f(x)±g(x)dx=∫f(x)dx±∫g(x)dx
51(∫7dy+∫−ydy+∫−53−ydy)
Calculate
51×∫7dy+51×∫−ydy+51×∫−53−ydy
Evaluate the integral
More Steps

Evaluate
51×∫7dy
Use the property of integral ∫kdx=kx
51×7y
Multiply the numbers
57y
57y+51×∫−ydy+51×∫−53−ydy
Evaluate the integral
More Steps

Evaluate
51×∫−ydy
Use the property of integral ∫kf(x)dx=k∫f(x)dx
51(−1)×∫ydy
Multiplying or dividing an odd number of negative terms equals a negative
−51×∫ydy
Use the property of integral ∫xndx=n+1xn+1
−51×1+1y1+1
Simplify
More Steps

Evaluate
1+1y1+1
Add the numbers
1+1y2
Add the numbers
2y2
−51×2y2
Multiply the terms
−5×2y2
Multiply the terms
−10y2
57y−10y2+51×∫−53−ydy
Evaluate the integral
More Steps

Evaluate
51×∫−53−ydy
Use the property of integral ∫kf(x)dx=k∫f(x)dx
51(−5)×∫3−ydy
Multiply the numbers
More Steps

Evaluate
51(−5)
Multiplying or dividing an odd number of negative terms equals a negative
−51×5
Reduce the numbers
−1×1
Simplify
−1
−∫3−ydy
Rewrite the expression
−∫(3−y)21dy
Use the substitution dy=−1dt to transform the integral
More Steps

Evaluate
t=3−y
Calculate the derivative
dt=−1dy
Evaluate
dy=−1dt
−∫(3−y)21(−1)dt
Simplify
−∫−(3−y)21dt
Use the substitution t=3−y to transform the integral
−∫−t21dt
Use the property of integral ∫kf(x)dx=k∫f(x)dx
−(−1)×∫t21dt
When there is - in front of an expression in parentheses change the sign of each term of the expression and remove the parentheses
1×∫t21dt
Simplify
∫t21dt
Use the property of integral ∫xndx=n+1xn+1
21+1t21+1
Add the numbers
More Steps

Evaluate
21+1
Write all numerators above the least common denominator 2
21+1×21×2
Calculate
21+22
Add the terms
21+2
Add the terms
23
21+1t23
Add the numbers
More Steps

Evaluate
21+1
Write all numerators above the least common denominator 2
21+1×21×2
Calculate
21+22
Add the terms
21+2
Add the terms
23
23t23
Multiply by the reciprocal
t23×32
Use the commutative property to reorder the terms
32t23
Substitute back
32(3−y)23
57y−10y2+32(3−y)23
Return the limits
(57y−10y2+32(3−y)23)02
Calculate the value
More Steps

Substitute the values into formula
57×2−1022+32(3−2)23−(57×0−1002+32(3−0)23)
Any expression multiplied by 0 equals 0
57×2−1022+32(3−2)23−(0−1002+32(3−0)23)
Removing 0 doesn't change the value,so remove it from the expression
57×2−1022+32(3−2)23−(0−1002+32×323)
Subtract the numbers
57×2−1022+32×123−(0−1002+32×323)
Calculate
57×2−1022+32×123−(0−100+32×323)
1 raised to any power equals to 1
57×2−1022+32×1−(0−100+32×323)
Divide the terms
57×2−1022+32×1−(0−0+32×323)
Reduce the numbers
57×2−1022+32×1−(0−0+2×321)
Divide the terms
More Steps

Evaluate
1022
Rewrite the expression
2×522
Reduce the fraction
52
57×2−52+32×1−(0−0+2×321)
Multiply the numbers
More Steps

Evaluate
57×2
Multiply the numbers
57×2
Multiply the numbers
514
514−52+32×1−(0−0+2×321)
Any expression multiplied by 1 remains the same
514−52+32−(0−0+2×321)
Removing 0 doesn't change the value,so remove it from the expression
514−52+32−2×321
Calculate the sum or difference
More Steps

Evaluate
514−52+32
Subtract the numbers
512+32
Write all numerators above the least common denominator 15
5×312×3+3×52×5
Calculate
1536+1510
Add the terms
1536+10
Add the terms
1546
1546−2×321
1546−2×321
Use anm=nam to transform the expression
1546−23
Solution
1546−303
Alternative Form
≈−0.397435
Show Solution
