Question
Evaluate the integral
61
Alternative Form
0.16˙
Evaluate
∫1ex(ln(x))5dx
Evaluate the integral
∫x(ln(x))5dx
Use the substitution dx=xdt to transform the integral
More Steps

Evaluate
t=ln(x)
Calculate the derivative
dt=x1dx
Evaluate
dx=xdt
∫x(ln(x))5×xdt
Simplify
More Steps

Multiply the terms
x(ln(x))5×x
Cancel out the common factor x
(ln(x))5×1
Multiply the terms
(ln(x))5
∫(ln(x))5dt
Use the substitution t=ln(x) to transform the integral
∫t5dt
Use the property of integral ∫xndx=n+1xn+1
5+1t5+1
Add the numbers
5+1t6
Add the numbers
6t6
Substitute back
6(ln(x))6
Simplify the expression
61(ln(x))6
Return the limits
(61(ln(x))6)1e
Solution
More Steps

Substitute the values into formula
61(ln(e))6−61(ln(1))6
A logarithm with the same base and argument equals 1
61×16−61(ln(1))6
Evaluate the logarithm
61×16−61×06
1 raised to any power equals to 1
61×1−61×06
Calculate
61×1−61×0
Any expression multiplied by 1 remains the same
61−61×0
Any expression multiplied by 0 equals 0
61−0
Removing 0 doesn't change the value,so remove it from the expression
61
61
Alternative Form
0.16˙
Show Solution
