Question
Solve the inequality
x∈(−∞,0]∪[1,+∞)
Evaluate
∣1−x∣−∣3x−2∣≤−1
Separate the inequality into 4 possible cases
1−x−(3x−2)≤−1,1−x≥0,3x−2≥01−x−(−(3x−2))≤−1,1−x≥0,3x−2<0−(1−x)−(3x−2)≤−1,1−x<0,3x−2≥0−(1−x)−(−(3x−2))≤−1,1−x<0,3x−2<0
Evaluate
More Steps

Evaluate
1−x−(3x−2)≤−1
Remove the parentheses
1−x−3x+2≤−1
Simplify the expression
3−4x≤−1
Move the expression to the left side
3−4x−(−1)≤0
Calculate
4−4x≤0
Move the constant to the right side
−4x≤0−4
Removing 0 doesn't change the value,so remove it from the expression
−4x≤−4
Change the signs on both sides of the inequality and flip the inequality sign
4x≥4
Divide both sides
44x≥44
Divide the numbers
x≥44
Divide the numbers
More Steps

Evaluate
44
Reduce the numbers
11
Calculate
1
x≥1
x≥1,1−x≥0,3x−2≥01−x−(−(3x−2))≤−1,1−x≥0,3x−2<0−(1−x)−(3x−2)≤−1,1−x<0,3x−2≥0−(1−x)−(−(3x−2))≤−1,1−x<0,3x−2<0
Evaluate
More Steps

Evaluate
1−x≥0
Move the constant to the right side
−x≥0−1
Removing 0 doesn't change the value,so remove it from the expression
−x≥−1
Change the signs on both sides of the inequality and flip the inequality sign
x≤1
x≥1,x≤1,3x−2≥01−x−(−(3x−2))≤−1,1−x≥0,3x−2<0−(1−x)−(3x−2)≤−1,1−x<0,3x−2≥0−(1−x)−(−(3x−2))≤−1,1−x<0,3x−2<0
Evaluate
More Steps

Evaluate
3x−2≥0
Move the constant to the right side
3x≥0+2
Removing 0 doesn't change the value,so remove it from the expression
3x≥2
Divide both sides
33x≥32
Divide the numbers
x≥32
x≥1,x≤1,x≥321−x−(−(3x−2))≤−1,1−x≥0,3x−2<0−(1−x)−(3x−2)≤−1,1−x<0,3x−2≥0−(1−x)−(−(3x−2))≤−1,1−x<0,3x−2<0
Evaluate
More Steps

Evaluate
1−x−(−(3x−2))≤−1
Remove the parentheses
1−x+3x−2≤−1
Simplify the expression
−1+2x≤−1
Move the expression to the left side
−1+2x−(−1)≤0
Calculate
0+2x≤0
Evaluate
2x≤0
Rewrite the expression
x≤0
x≥1,x≤1,x≥32x≤0,1−x≥0,3x−2<0−(1−x)−(3x−2)≤−1,1−x<0,3x−2≥0−(1−x)−(−(3x−2))≤−1,1−x<0,3x−2<0
Evaluate
More Steps

Evaluate
1−x≥0
Move the constant to the right side
−x≥0−1
Removing 0 doesn't change the value,so remove it from the expression
−x≥−1
Change the signs on both sides of the inequality and flip the inequality sign
x≤1
x≥1,x≤1,x≥32x≤0,x≤1,3x−2<0−(1−x)−(3x−2)≤−1,1−x<0,3x−2≥0−(1−x)−(−(3x−2))≤−1,1−x<0,3x−2<0
Evaluate
More Steps

Evaluate
3x−2<0
Move the constant to the right side
3x<0+2
Removing 0 doesn't change the value,so remove it from the expression
3x<2
Divide both sides
33x<32
Divide the numbers
x<32
x≥1,x≤1,x≥32x≤0,x≤1,x<32−(1−x)−(3x−2)≤−1,1−x<0,3x−2≥0−(1−x)−(−(3x−2))≤−1,1−x<0,3x−2<0
Evaluate
More Steps

Evaluate
−(1−x)−(3x−2)≤−1
Remove the parentheses
−1+x−3x+2≤−1
Simplify the expression
1−2x≤−1
Move the expression to the left side
1−2x−(−1)≤0
Calculate
2−2x≤0
Move the constant to the right side
−2x≤0−2
Removing 0 doesn't change the value,so remove it from the expression
−2x≤−2
Change the signs on both sides of the inequality and flip the inequality sign
2x≥2
Divide both sides
22x≥22
Divide the numbers
x≥22
Divide the numbers
More Steps

Evaluate
22
Reduce the numbers
11
Calculate
1
x≥1
x≥1,x≤1,x≥32x≤0,x≤1,x<32x≥1,1−x<0,3x−2≥0−(1−x)−(−(3x−2))≤−1,1−x<0,3x−2<0
Evaluate
More Steps

Evaluate
1−x<0
Move the constant to the right side
−x<0−1
Removing 0 doesn't change the value,so remove it from the expression
−x<−1
Change the signs on both sides of the inequality and flip the inequality sign
x>1
x≥1,x≤1,x≥32x≤0,x≤1,x<32x≥1,x>1,3x−2≥0−(1−x)−(−(3x−2))≤−1,1−x<0,3x−2<0
Evaluate
More Steps

Evaluate
3x−2≥0
Move the constant to the right side
3x≥0+2
Removing 0 doesn't change the value,so remove it from the expression
3x≥2
Divide both sides
33x≥32
Divide the numbers
x≥32
x≥1,x≤1,x≥32x≤0,x≤1,x<32x≥1,x>1,x≥32−(1−x)−(−(3x−2))≤−1,1−x<0,3x−2<0
Evaluate
More Steps

Evaluate
−(1−x)−(−(3x−2))≤−1
Remove the parentheses
−1+x+3x−2≤−1
Simplify the expression
−3+4x≤−1
Move the expression to the left side
−3+4x−(−1)≤0
Calculate
−2+4x≤0
Move the constant to the right side
4x≤0+2
Removing 0 doesn't change the value,so remove it from the expression
4x≤2
Divide both sides
44x≤42
Divide the numbers
x≤42
Cancel out the common factor 2
x≤21
x≥1,x≤1,x≥32x≤0,x≤1,x<32x≥1,x>1,x≥32x≤21,1−x<0,3x−2<0
Evaluate
More Steps

Evaluate
1−x<0
Move the constant to the right side
−x<0−1
Removing 0 doesn't change the value,so remove it from the expression
−x<−1
Change the signs on both sides of the inequality and flip the inequality sign
x>1
x≥1,x≤1,x≥32x≤0,x≤1,x<32x≥1,x>1,x≥32x≤21,x>1,3x−2<0
Evaluate
More Steps

Evaluate
3x−2<0
Move the constant to the right side
3x<0+2
Removing 0 doesn't change the value,so remove it from the expression
3x<2
Divide both sides
33x<32
Divide the numbers
x<32
x≥1,x≤1,x≥32x≤0,x≤1,x<32x≥1,x>1,x≥32x≤21,x>1,x<32
Find the intersection
x=1x≤0,x≤1,x<32x≥1,x>1,x≥32x≤21,x>1,x<32
Find the intersection
x=1x≤0x≥1,x>1,x≥32x≤21,x>1,x<32
Find the intersection
x=1x≤0x>1x≤21,x>1,x<32
Find the intersection
x=1x≤0x>1x∈∅
Solution
x∈(−∞,0]∪[1,+∞)
Show Solution
