Question
Solve the equation
x1=69−97,x2=69−65,x3=69+65,x4=69+97
Alternative Form
x1≈−0.141476,x2≈0.15629,x3≈2.84371,x4≈3.141476
Evaluate
∣3x×9∣∣x−3∣=12
Simplify
More Steps

Evaluate
∣3x×9∣∣x−3∣
Multiply the terms
∣27x∣∣x−3∣
Multiply the terms
∣27x(x−3)∣
∣27x(x−3)∣=12
Separate the equation into 2 possible cases
27x(x−3)=1227x(x−3)=−12
Solve the equation for x
More Steps

Evaluate
27x(x−3)=12
Expand the expression
More Steps

Evaluate
27x(x−3)
Apply the distributive property
27x×x−27x×3
Multiply the terms
27x2−27x×3
Multiply the numbers
27x2−81x
27x2−81x=12
Move the expression to the left side
27x2−81x−12=0
Substitute a=27,b=−81 and c=−12 into the quadratic formula x=2a−b±b2−4ac
x=2×2781±(−81)2−4×27(−12)
Simplify the expression
x=5481±(−81)2−4×27(−12)
Simplify the expression
More Steps

Evaluate
(−81)2−4×27(−12)
Multiply
(−81)2−(−1296)
Rewrite the expression
812−(−1296)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
812+1296
Evaluate the power
6561+1296
Add the numbers
7857
x=5481±7857
Simplify the radical expression
More Steps

Evaluate
7857
Write the expression as a product where the root of one of the factors can be evaluated
81×97
Write the number in exponential form with the base of 9
92×97
The root of a product is equal to the product of the roots of each factor
92×97
Reduce the index of the radical and exponent with 2
997
x=5481±997
Separate the equation into 2 possible cases
x=5481+997x=5481−997
Simplify the expression
x=69+97x=5481−997
Simplify the expression
x=69+97x=69−97
x=69+97x=69−9727x(x−3)=−12
Solve the equation for x
More Steps

Evaluate
27x(x−3)=−12
Expand the expression
More Steps

Evaluate
27x(x−3)
Apply the distributive property
27x×x−27x×3
Multiply the terms
27x2−27x×3
Multiply the numbers
27x2−81x
27x2−81x=−12
Move the expression to the left side
27x2−81x−(−12)=0
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
27x2−81x+12=0
Substitute a=27,b=−81 and c=12 into the quadratic formula x=2a−b±b2−4ac
x=2×2781±(−81)2−4×27×12
Simplify the expression
x=5481±(−81)2−4×27×12
Simplify the expression
More Steps

Evaluate
(−81)2−4×27×12
Multiply the terms
(−81)2−1296
Rewrite the expression
812−1296
Evaluate the power
6561−1296
Subtract the numbers
5265
x=5481±5265
Simplify the radical expression
More Steps

Evaluate
5265
Write the expression as a product where the root of one of the factors can be evaluated
81×65
Write the number in exponential form with the base of 9
92×65
The root of a product is equal to the product of the roots of each factor
92×65
Reduce the index of the radical and exponent with 2
965
x=5481±965
Separate the equation into 2 possible cases
x=5481+965x=5481−965
Simplify the expression
x=69+65x=5481−965
Simplify the expression
x=69+65x=69−65
x=69+97x=69−97x=69+65x=69−65
Solution
x1=69−97,x2=69−65,x3=69+65,x4=69+97
Alternative Form
x1≈−0.141476,x2≈0.15629,x3≈2.84371,x4≈3.141476
Show Solution
