Question
Simplify the expression
41+41i
Evaluate
(1−ii)3
Divide the terms
More Steps

Evaluate
1−ii
Multiply by the Conjugate
(1−i)(1+i)i(1+i)
Calculate
More Steps

Evaluate
i(1+i)
Apply the distributive property
i+i×i
Multiply the numbers
i−1
Reorder the terms
−1+i
(1−i)(1+i)−1+i
Calculate
More Steps

Evaluate
(1−i)(1+i)
Use (a−b)(a+b)=a2−b2 to simplify the product
12−i2
Evaluate the power
1−i2
Evaluate the power
1−(−1)
Calculate
2
2−1+i
Use b−a=−ba=−ba to rewrite the fraction
−21−i
Simplify
−21+21i
(−21+21i)3
Use (a+b)3=a3+3a2b+3ab2+b3 to expand the expression
(−21)3+3(−21)2×21i+3(−21)(21i)2+(21i)3
Evaluate
More Steps

Evaluate
(−21)3
Rewrite the expression
−(21)3
To raise a fraction to a power,raise the numerator and denominator to that power
−2313
Evaluate the power
−231
Evaluate the power
−81
−81+3(−21)2×21i+3(−21)(21i)2+(21i)3
Evaluate
More Steps

Evaluate
3(−21)2×21i
Multiply the terms
More Steps

Evaluate
3(−21)2
Evaluate the power
3×41
Multiply the numbers
43
43×21i
Multiply the numbers
83i
−81+83i+3(−21)(21i)2+(21i)3
Evaluate
More Steps

Evaluate
3(−21)(21i)2
Evaluate the power
More Steps

Evaluate
(21i)2
Evaluate
(21)2i2
Evaluate the power
41i2
Evaluate the power
−41
3(−21)(−41)
Rewrite the expression
3×21×41
Multiply the numbers
23×41
To multiply the fractions,multiply the numerators and denominators separately
2×43
Multiply the numbers
83
−81+83i+83+(21i)3
Evaluate
More Steps

Evaluate
(21i)3
Evaluate
(21)3i3
Calculate
(21)3i2×i
Calculate
(21)3(−1)i
Calculate
−81i
−81+83i+83−81i
Solution
41+41i
Show Solution
