Question
Simplify the expression
sin2(2x)cos(2x2)
Evaluate
(1−2sin2(x2))×4sin2(x)cos2(x)
Calculate
(cos(2x2))×4sin2(x)cos2(x)
Calculate
cos(2x2)×4sin2(x)cos2(x)
Multiply the terms
4cos(2x2)sin2(x)cos2(x)
Use sin2t=1−cos2t to transform the expression
4cos(2x2)(1−cos2(x))cos2(x)
Multiply the terms
4cos(2x2)cos2(x)(1−cos2(x))
Use cos(2t)=cos2t−sin2t to transform the expression
4(cos2(x2)−sin2(x2))cos2(x)(1−cos2(x))
Multiply the terms
4cos2(x)(cos2(x2)−sin2(x2))(1−cos2(x))
Use cos2t=1−sin2t to transform the expression
4(1−sin2(x))(cos2(x2)−sin2(x2))(1−cos2(x))
Transform the expression
More Steps

Evaluate
cos2(x2)−sin2(x2)
Use cos2t=1−sin2t to transform the expression
1−sin2(x2)−sin2(x2)
Subtract the terms
1−2sin2(x2)
4(1−sin2(x))(1−2sin2(x2))(1−cos2(x))
Transform the expression
More Steps

Evaluate
1−cos2(x)
Use cos2t=1−sin2t to transform the expression
1−(1−sin2(x))
Calculate
1−1+sin2(x)
Since two opposites add up to 0,remove them form the expression
sin2(x)
4(1−sin2(x))(1−2sin2(x2))sin2(x)
Multiply the terms
4sin2(x)(1−sin2(x))(1−2sin2(x2))
Use 1−sin2(t)=cos2(t) to transform the expression
4sin2(x)cos2(x)(1−2sin2(x2))
Use sin2t=1−cos2t to transform the expression
4(1−cos2(x))cos2(x)(1−2sin2(x2))
Transform the expression
More Steps

Evaluate
1−2sin2(x2)
Transform the expression
More Steps

Evaluate
−2sin2(x2)
Use sin2t=1−cos2t to transform the expression
−2(1−cos2(x2))
Use the the distributive property to expand the expression
−2×1−2(−cos2(x2))
Any expression multiplied by 1 remains the same
−2−2(−cos2(x2))
Multiply the terms
−2+2cos2(x2)
1−2+2cos2(x2)
Subtract the numbers
−1+2cos2(x2)
4(1−cos2(x))cos2(x)(−1+2cos2(x2))
Multiply the terms
4cos2(x)(1−cos2(x))(−1+2cos2(x2))
Use 2cos2t=cos(2t)+1 to transform the expression
4×21+cos(2x)×(1−cos2(x))(−1+2cos2(x2))
Transform the expression
More Steps

Evaluate
1−cos2(x)
Use 2cos2t=cos(2t)+1 to transform the expression
1−21+cos(2x)
Reduce fractions to a common denominator
22−21+cos(2x)
Write all numerators above the common denominator
22−(1+cos(2x))
Subtract the terms
More Steps

Evaluate
2−(1+cos(2x))
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
2−1−cos(2x)
Subtract the numbers
1−cos(2x)
21−cos(2x)
4×21+cos(2x)×21−cos(2x)×(−1+2cos2(x2))
Transform the expression
More Steps

Evaluate
−1+2cos2(x2)
Transform the expression
More Steps

Evaluate
2cos2(x2)
Use 2cos2t=cos(2t)+1 to transform the expression
2×21+cos(2x2)
Cancel out the common factor 2
1×(1+cos(2x2))
Multiply the terms
1+cos(2x2)
−1+1+cos(2x2)
Since two opposites add up to 0,remove them form the expression
cos(2x2)
4×21+cos(2x)×21−cos(2x)×cos(2x2)
Multiply the terms
More Steps

Multiply the terms
4×21+cos(2x)
Cancel out the common factor 2
2(1+cos(2x))
Use the the distributive property to expand the expression
2×1+2cos(2x)
Any expression multiplied by 1 remains the same
2+2cos(2x)
(2+2cos(2x))×21−cos(2x)×cos(2x2)
Multiply the terms
More Steps

Multiply the terms
(2+2cos(2x))×21−cos(2x)
Rewrite the expression
2(1+cos(2x))×21−cos(2x)
Cancel out the common factor 2
(1+cos(2x))(1−cos(2x))
(1+cos(2x))(1−cos(2x))cos(2x2)
Transform the expression
cos(2x2)−cos(2x2)cos2(2x)
Use cos2t=1−sin2t to transform the expression
cos(2x2)−cos(2x2)(1−sin2(2x))
Solution
sin2(2x)cos(2x2)
Show Solution
