Question
Simplify the expression
616x4−1848x3−6
Evaluate
(4x×7)(x2−3x)×22x−6
Remove the parentheses
4x×7(x2−3x)×22x−6
Multiply
More Steps

Multiply the terms
4x×7(x2−3x)×22x
Multiply the terms
More Steps

Evaluate
4×7×22
Multiply the terms
28×22
Multiply the numbers
616
616x(x2−3x)x
Multiply the terms
616x2(x2−3x)
616x2(x2−3x)−6
Solution
More Steps

Evaluate
616x2(x2−3x)
Apply the distributive property
616x2×x2−616x2×3x
Multiply the terms
More Steps

Evaluate
x2×x2
Use the product rule an×am=an+m to simplify the expression
x2+2
Add the numbers
x4
616x4−616x2×3x
Multiply the terms
More Steps

Evaluate
616x2×3x
Multiply the numbers
1848x2×x
Multiply the terms
1848x3
616x4−1848x3
616x4−1848x3−6
Show Solution

Factor the expression
2(308x4−924x3−3)
Evaluate
(4x×7)(x2−3x)×22x−6
Remove the parentheses
4x×7(x2−3x)×22x−6
Multiply the terms
28x(x2−3x)×22x−6
Multiply
More Steps

Multiply the terms
28x(x2−3x)×22x
Multiply the terms
616x(x2−3x)x
Multiply the terms
616x2(x2−3x)
616x2(x2−3x)−6
Simplify
More Steps

Evaluate
616x2(x2−3x)
Apply the distributive property
616x2×x2+616x2(−3x)
Multiply the terms
More Steps

Evaluate
x2×x2
Use the product rule an×am=an+m to simplify the expression
x2+2
Add the numbers
x4
616x4+616x2(−3x)
Multiply the terms
More Steps

Evaluate
616x2(−3x)
Multiply the numbers
−1848x2×x
Multiply the terms
−1848x3
616x4−1848x3
616x4−1848x3−6
Solution
2(308x4−924x3−3)
Show Solution

Find the roots
x1≈−0.145752,x2≈3.000361
Evaluate
(4x×7)(x2−3x)×22x−6
To find the roots of the expression,set the expression equal to 0
(4x×7)(x2−3x)×22x−6=0
Multiply the terms
28x(x2−3x)×22x−6=0
Multiply
More Steps

Multiply the terms
28x(x2−3x)×22x
Multiply the terms
616x(x2−3x)x
Multiply the terms
616x2(x2−3x)
616x2(x2−3x)−6=0
Calculate
More Steps

Evaluate
616x2(x2−3x)
Apply the distributive property
616x2×x2−616x2×3x
Multiply the terms
More Steps

Evaluate
x2×x2
Use the product rule an×am=an+m to simplify the expression
x2+2
Add the numbers
x4
616x4−616x2×3x
Multiply the terms
More Steps

Evaluate
616x2×3x
Multiply the numbers
1848x2×x
Multiply the terms
1848x3
616x4−1848x3
616x4−1848x3−6=0
Factor the expression
2(308x4−924x3−3)=0
Divide both sides
308x4−924x3−3=0
Calculate
x≈3.000361x≈−0.145752
Solution
x1≈−0.145752,x2≈3.000361
Show Solution
