Question
Simplify the expression
−4y2−5y336y3−5
Evaluate
(4y2×9y−5)÷(−(4y2−5y3))
Use the rules for multiplication and division
−(4y2×9y−5)÷(4y2−5y3)
Multiply
More Steps

Multiply the terms
4y2×9y
Multiply the terms
36y2×y
Multiply the terms with the same base by adding their exponents
36y2+1
Add the numbers
36y3
−(36y3−5)÷(4y2−5y3)
Solution
−4y2−5y336y3−5
Show Solution

Find the excluded values
y=0,y=54
Evaluate
(4y2×9y−5)÷(−(4y2−5y3))
To find the excluded values,set the denominators equal to 0
−(4y2−5y3)=0
Calculate
−4y2+5y3=0
Factor the expression
y2(−4+5y)=0
Separate the equation into 2 possible cases
y2=0−4+5y=0
The only way a power can be 0 is when the base equals 0
y=0−4+5y=0
Solve the equation
More Steps

Evaluate
−4+5y=0
Move the constant to the right-hand side and change its sign
5y=0+4
Removing 0 doesn't change the value,so remove it from the expression
5y=4
Divide both sides
55y=54
Divide the numbers
y=54
y=0y=54
Solution
y=0,y=54
Show Solution

Find the roots
y=6330
Alternative Form
y≈0.517872
Evaluate
(4y2×9y−5)÷(−(4y2−5y3))
To find the roots of the expression,set the expression equal to 0
(4y2×9y−5)÷(−(4y2−5y3))=0
Find the domain
More Steps

Evaluate
−(4y2−5y3)=0
Calculate
−4y2+5y3=0
Factor the expression
y2(−4+5y)=0
Apply the zero product property
{y2=0−4+5y=0
The only way a power can not be 0 is when the base not equals 0
{y=0−4+5y=0
Solve the inequality
More Steps

Evaluate
−4+5y=0
Move the constant to the right side
5y=0+4
Removing 0 doesn't change the value,so remove it from the expression
5y=4
Divide both sides
55y=54
Divide the numbers
y=54
{y=0y=54
Find the intersection
y∈(−∞,0)∪(0,54)∪(54,+∞)
(4y2×9y−5)÷(−(4y2−5y3))=0,y∈(−∞,0)∪(0,54)∪(54,+∞)
Calculate
(4y2×9y−5)÷(−(4y2−5y3))=0
Multiply
More Steps

Multiply the terms
4y2×9y
Multiply the terms
36y2×y
Multiply the terms with the same base by adding their exponents
36y2+1
Add the numbers
36y3
(36y3−5)÷(−(4y2−5y3))=0
Calculate
(36y3−5)÷(−4y2+5y3)=0
Rewrite the expression
−4y2+5y336y3−5=0
Cross multiply
36y3−5=(−4y2+5y3)×0
Simplify the equation
36y3−5=0
Move the constant to the right side
36y3=5
Divide both sides
3636y3=365
Divide the numbers
y3=365
Take the 3-th root on both sides of the equation
3y3=3365
Calculate
y=3365
Simplify the root
More Steps

Evaluate
3365
To take a root of a fraction,take the root of the numerator and denominator separately
33635
Multiply by the Conjugate
336×336235×3362
Simplify
336×336235×636
Multiply the numbers
More Steps

Evaluate
35×636
Multiply the terms
330×6
Use the commutative property to reorder the terms
6330
336×33626330
Multiply the numbers
More Steps

Evaluate
336×3362
The product of roots with the same index is equal to the root of the product
336×362
Calculate the product
3363
Transform the expression
366
Reduce the index of the radical and exponent with 3
62
626330
Reduce the fraction
More Steps

Evaluate
626
Use the product rule aman=an−m to simplify the expression
62−11
Subtract the terms
611
Simplify
61
6330
y=6330
Check if the solution is in the defined range
y=6330,y∈(−∞,0)∪(0,54)∪(54,+∞)
Solution
y=6330
Alternative Form
y≈0.517872
Show Solution
