Question
Simplify the expression
5241×b60
Evaluate
(54b−10)−6
To raise a product to a power,raise each factor to that power
(54)−6(b−10)−6
Evaluate the power
5−24(b−10)−6
Evaluate the power
More Steps

Evaluate
(b−10)−6
Multiply the exponents
b−10(−6)
Multiply the terms
b60
5−24b60
Solution
5241×b60
Show Solution

Find the roots
b∈∅
Evaluate
(54b−10)−6
To find the roots of the expression,set the expression equal to 0
(54b−10)−6=0
Find the domain
More Steps

Evaluate
{b=054b−10=0
Calculate
More Steps

Evaluate
54b−10=0
Rewrite the expression
b−10=0
Rearrange the terms
b101=0
Calculate
{1=0b10=0
The statement is true for any value of b
{b∈Rb10=0
The only way a power can not be 0 is when the base not equals 0
{b∈Rb=0
Find the intersection
b=0
{b=0b=0
Find the intersection
b=0
(54b−10)−6=0,b=0
Calculate
(54b−10)−6=0
Rewrite the expression
(54b−10)61=0
Cross multiply
1=(54b−10)6×0
Simplify the equation
1=0
Solution
b∈∅
Show Solution
