Question
Solve the equation
x=5473log2(7)
Alternative Form
x≈12.033656
Evaluate
log7(5x)×4log7(2)=3
Find the domain
More Steps

Evaluate
5x>0
Rewrite the expression
x>0
log7(5x)×4log7(2)=3,x>0
Multiply the terms
More Steps

Evaluate
log7(5x)×4log7(2)
Multiply the terms
4log7(5x)×log7(2)
Use the commutative property to reorder the terms
4log7(2)×log7(5x)
4log7(2)×log7(5x)=3
Divide both sides
4log7(2)4log7(2)×log7(5x)=4log7(2)3
Divide the numbers
log7(5x)=4log7(2)3
Evaluate the logarithm
log7(5x)=log7(24)3
Evaluate the logarithm
log7(5x)=3log24(7)
Convert the logarithm into exponential form using the fact that logax=b is equal to x=ab
5x=73log24(7)
Simplify
5x=73log16(7)
Divide both sides
55x=573log16(7)
Divide the numbers
x=573log16(7)
Simplify
More Steps

Evaluate
573log16(7)
Simplify
More Steps

Evaluate
3log16(7)
Simplify
3×41log2(7)
Multiply the numbers
43log2(7)
5743log2(7)
Use anm=nam to transform the expression
5473log2(7)
x=5473log2(7)
Check if the solution is in the defined range
x=5473log2(7),x>0
Solution
x=5473log2(7)
Alternative Form
x≈12.033656
Show Solution
