Question
Simplify the expression
99101δ6ϕ−201373232δ
Evaluate
ϕ×991013÷(δ×84)−9−2023
Cancel out the common factor 4
ϕ×991013÷(δ×21)−9−2023
Use the commutative property to reorder the terms
991013ϕ÷(δ×21)−9−2023
Use the commutative property to reorder the terms
991013ϕ÷21δ−9−2023
Divide the terms
More Steps

Evaluate
991013ϕ÷21δ
Rewrite the expression
991013ϕ÷21δ
Rewrite the expression
991013ϕ÷2δ
Multiply by the reciprocal
991013ϕ×δ2
Multiply the terms
99101δ3ϕ×2
Multiply the terms
99101δ6ϕ
99101δ6ϕ−9−2023
Subtract the numbers
99101δ6ϕ−2032
Reduce fractions to a common denominator
99101δ6ϕ−99101δ2032×99101δ
Write all numerators above the common denominator
99101δ6ϕ−2032×99101δ
Solution
99101δ6ϕ−201373232δ
Show Solution

Find the excluded values
δ=0
Evaluate
ϕ×991013÷(δ×84)−9−2023
To find the excluded values,set the denominators equal to 0
δ×84=0
Simplify
More Steps

Evaluate
δ×84
Cancel out the common factor 4
δ×21
Use the commutative property to reorder the terms
21δ
21δ=0
Solution
δ=0
Show Solution
