Question
Simplify the expression
9072π−2016πx2+112πx4−2x2d−14dx
Evaluate
π×112(9−x2)2−(x+7)×2dx
Use the commutative property to reorder the terms
112π(9−x2)2−(x+7)×2dx
Multiply the first two terms
112π(9−x2)2−2(x+7)dx
Expand the expression
More Steps

Calculate
112π(9−x2)2
Simplify
112π(81−18x2+x4)
Apply the distributive property
112π×81−112π×18x2+112πx4
Multiply the terms
9072π−112π×18x2+112πx4
Multiply the numbers
9072π−2016πx2+112πx4
9072π−2016πx2+112πx4−2(x+7)dx
Solution
More Steps

Calculate
−2(x+7)dx
Simplify
More Steps

Evaluate
−2(x+7)
Apply the distributive property
−2x−2×7
Multiply the numbers
−2x−14
(−2x−14)dx
Simplify
(−2xd−14d)x
Apply the distributive property
−2xdx−14dx
Multiply the terms
−2x2d−14dx
9072π−2016πx2+112πx4−2x2d−14dx
Show Solution

Factor the expression
2(4536π−1008πx2+56πx4−dx2−7dx)
Evaluate
π×112(9−x2)2−(x+7)×2dx
Use the commutative property to reorder the terms
112π(9−x2)2−(x+7)×2dx
Multiply the terms
More Steps

Multiply the terms
(x+7)×2dx
Multiply the first two terms
2(x+7)dx
Multiply the first two terms
2d(x+7)x
Multiply the terms
2dx(x+7)
112π(9−x2)2−2dx(x+7)
Simplify
More Steps

Evaluate
112π(9−x2)2
Simplify
More Steps

Evaluate
(9−x2)2
Use (a−b)2=a2−2ab+b2 to expand the expression
92−2×9x2+(x2)2
Calculate
81−18x2+x4
112π(81−18x2+x4)
Apply the distributive property
112π×81+112π(−18x2)+112πx4
Multiply the terms
9072π+112π(−18x2)+112πx4
Multiply the terms
More Steps

Evaluate
112π(−18)
Rewrite the expression
−112π×18
Multiply the terms
−2016π
9072π−2016πx2+112πx4
9072π−2016πx2+112πx4−2dx(x+7)
Simplify
More Steps

Evaluate
−2dx(x+7)
Apply the distributive property
−2dx×x−2dx×7
Multiply the terms
−2dx2−2dx×7
Multiply the terms
−2dx2−14dx
9072π−2016πx2+112πx4−2dx2−14dx
Solution
2(4536π−1008πx2+56πx4−dx2−7dx)
Show Solution
