Question
Simplify the expression
21504x−182x2
Evaluate
42x(32−41x(32−81)×2)×16×1
Subtract the numbers
More Steps

Simplify
32−81
Reduce fractions to a common denominator
3×82×8−8×33
Multiply the numbers
242×8−8×33
Multiply the numbers
242×8−243
Write all numerators above the common denominator
242×8−3
Multiply the numbers
2416−3
Subtract the numbers
2413
42x(32−41x×2413×2)×16×1
Multiply the terms
More Steps

Multiply the terms
41x×2413×2
Multiply the terms
More Steps

Evaluate
41×2413×2
Multiply the terms
9613×2
Reduce the numbers
4813×1
Multiply the numbers
4813
4813x
42x(32−4813x)×16×1
Rewrite the expression
42x(32−4813x)×16
Multiply the terms
672x(32−4813x)
Apply the distributive property
672x×32−672x×4813x
Multiply the numbers
21504x−672x×4813x
Solution
More Steps

Evaluate
672x×4813x
Multiply the numbers
More Steps

Evaluate
672×4813
Reduce the numbers
14×13
Multiply the numbers
182
182x×x
Multiply the terms
182x2
21504x−182x2
Show Solution

Factor the expression
14x(1536−13x)
Evaluate
42x(32−41x(32−81)×2)×16×1
Subtract the numbers
More Steps

Simplify
32−81
Reduce fractions to a common denominator
3×82×8−8×33
Multiply the numbers
242×8−8×33
Multiply the numbers
242×8−243
Write all numerators above the common denominator
242×8−3
Multiply the numbers
2416−3
Subtract the numbers
2413
42x(32−41x×2413×2)×16×1
Multiply the terms
More Steps

Multiply the terms
41x×2413×2
Multiply the terms
More Steps

Evaluate
41×2413×2
Multiply the terms
9613×2
Reduce the numbers
4813×1
Multiply the numbers
4813
4813x
42x(32−4813x)×16×1
Rewrite the expression
42x(32−4813x)×16
Multiply the terms
672x(32−4813x)
Factor the expression
672x×481(1536−13x)
Solution
14x(1536−13x)
Show Solution

Find the roots
x1=0,x2=131536
Alternative Form
x1=0,x2=118.1˙53846˙
Evaluate
42x(32−41x(32−81)×2)×16×1
To find the roots of the expression,set the expression equal to 0
42x(32−41x(32−81)×2)×16×1=0
Subtract the numbers
More Steps

Simplify
32−81
Reduce fractions to a common denominator
3×82×8−8×33
Multiply the numbers
242×8−8×33
Multiply the numbers
242×8−243
Write all numerators above the common denominator
242×8−3
Multiply the numbers
2416−3
Subtract the numbers
2413
42x(32−41x×2413×2)×16×1=0
Multiply the terms
More Steps

Multiply the terms
41x×2413×2
Multiply the terms
More Steps

Evaluate
41×2413×2
Multiply the terms
9613×2
Reduce the numbers
4813×1
Multiply the numbers
4813
4813x
42x(32−4813x)×16×1=0
Multiply the terms
More Steps

Multiply the terms
42x(32−4813x)×16×1
Rewrite the expression
42x(32−4813x)×16
Multiply the terms
672x(32−4813x)
672x(32−4813x)=0
Elimination the left coefficient
x(32−4813x)=0
Separate the equation into 2 possible cases
x=032−4813x=0
Solve the equation
More Steps

Evaluate
32−4813x=0
Move the constant to the right-hand side and change its sign
−4813x=0−32
Removing 0 doesn't change the value,so remove it from the expression
−4813x=−32
Change the signs on both sides of the equation
4813x=32
Multiply by the reciprocal
4813x×1348=32×1348
Multiply
x=32×1348
Multiply
More Steps

Evaluate
32×1348
Multiply the numbers
1332×48
Multiply the numbers
131536
x=131536
x=0x=131536
Solution
x1=0,x2=131536
Alternative Form
x1=0,x2=118.1˙53846˙
Show Solution
