Question
Simplify the expression
12−4x+x2+3−36i
Evaluate
12x(4−x)i−3ii−3i
Use the commutative property to reorder the terms
12ix(4−x)−3ii−3i
Expand the expression
More Steps

Simplify
ix(4−x)−3i
Expand the expression
More Steps

Evaluate
ix(4−x)
Apply the distributive property
ix×4−ix×x
Multiply the numbers
4ix−ix×x
Multiply the terms
4ix−ix2
4ix−ix2−3i
124ix−ix2−3ii−3i
Multiply the terms
More Steps

Multiply the terms
124ix−ix2−3ii
Multiply the terms
12(4ix−ix2−3i)i
Multiply the terms
12i(4ix−ix2−3i)
12i(4ix−ix2−3i)−3i
Reduce fractions to a common denominator
12i(4ix−ix2−3i)−123i×12
Write all numerators above the common denominator
12i(4ix−ix2−3i)−3i×12
Multiply the terms
More Steps

Evaluate
i(4ix−ix2−3i)
Apply the distributive property
i×4ix−i×ix2−i×3i
Multiply the numbers
More Steps

Evaluate
i×4i
Multiply
4i2
Use i2=−1 to transform the expression
4(−1)
Calculate
−4
−4x−i×ix2−i×3i
Multiply the numbers
More Steps

Evaluate
i×i
Multiply
i2
Use i2=−1 to transform the expression
1×(−1)
Calculate
−1
−4x−(−x2)−i×3i
Multiply the numbers
More Steps

Evaluate
i×3i
Multiply
3i2
Use i2=−1 to transform the expression
3(−1)
Calculate
−3
−4x−(−x2)−(−3)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−4x+x2+3
12−4x+x2+3−3i×12
Solution
12−4x+x2+3−36i
Show Solution
