Question
Solve the inequality
x∈[53,1)∪(1,3]
Evaluate
x−12x×1≥3
Find the domain
More Steps

Evaluate
x−1=0
Move the constant to the right side
x=0+1
Removing 0 doesn't change the value,so remove it from the expression
x=1
x−12x×1≥3,x=1
Simplify
More Steps

Evaluate
x−12x×1
Multiply the terms
x−12x
Rewrite the expression
2×x−1x
Rewrite the expression
2x−1x
2x−1x≥3
Calculate
∣x−1∣2∣x∣−3∣x−1∣≥0
Separate the inequality into 2 possible cases
{2∣x∣−3∣x−1∣≥0∣x−1∣>0{2∣x∣−3∣x−1∣≤0∣x−1∣<0
Solve the inequality
More Steps

Evaluate
2∣x∣−3∣x−1∣≥0
Separate the inequality into 4 possible cases
2x−3(x−1)≥0,x≥0,x−1≥02x−3(−(x−1))≥0,x≥0,x−1<02(−x)−3(x−1)≥0,x<0,x−1≥02(−x)−3(−(x−1))≥0,x<0,x−1<0
Evaluate
More Steps

Evaluate
2x−3(x−1)≥0
Simplify the expression
−x+3≥0
Move the constant to the right side
−x≥0−3
Removing 0 doesn't change the value,so remove it from the expression
−x≥−3
Change the signs on both sides of the inequality and flip the inequality sign
x≤3
x≤3,x≥0,x−1≥02x−3(−(x−1))≥0,x≥0,x−1<02(−x)−3(x−1)≥0,x<0,x−1≥02(−x)−3(−(x−1))≥0,x<0,x−1<0
Evaluate
More Steps

Evaluate
x−1≥0
Move the constant to the right side
x≥0+1
Removing 0 doesn't change the value,so remove it from the expression
x≥1
x≤3,x≥0,x≥12x−3(−(x−1))≥0,x≥0,x−1<02(−x)−3(x−1)≥0,x<0,x−1≥02(−x)−3(−(x−1))≥0,x<0,x−1<0
Evaluate
More Steps

Evaluate
2x−3(−(x−1))≥0
Remove the parentheses
2x−3(−x+1)≥0
Simplify the expression
5x−3≥0
Move the constant to the right side
5x≥0+3
Removing 0 doesn't change the value,so remove it from the expression
5x≥3
Divide both sides
55x≥53
Divide the numbers
x≥53
x≤3,x≥0,x≥1x≥53,x≥0,x−1<02(−x)−3(x−1)≥0,x<0,x−1≥02(−x)−3(−(x−1))≥0,x<0,x−1<0
Evaluate
More Steps

Evaluate
x−1<0
Move the constant to the right side
x<0+1
Removing 0 doesn't change the value,so remove it from the expression
x<1
x≤3,x≥0,x≥1x≥53,x≥0,x<12(−x)−3(x−1)≥0,x<0,x−1≥02(−x)−3(−(x−1))≥0,x<0,x−1<0
Evaluate
More Steps

Evaluate
2(−x)−3(x−1)≥0
Simplify the expression
−5x+3≥0
Move the constant to the right side
−5x≥0−3
Removing 0 doesn't change the value,so remove it from the expression
−5x≥−3
Change the signs on both sides of the inequality and flip the inequality sign
5x≤3
Divide both sides
55x≤53
Divide the numbers
x≤53
x≤3,x≥0,x≥1x≥53,x≥0,x<1x≤53,x<0,x−1≥02(−x)−3(−(x−1))≥0,x<0,x−1<0
Evaluate
More Steps

Evaluate
x−1≥0
Move the constant to the right side
x≥0+1
Removing 0 doesn't change the value,so remove it from the expression
x≥1
x≤3,x≥0,x≥1x≥53,x≥0,x<1x≤53,x<0,x≥12(−x)−3(−(x−1))≥0,x<0,x−1<0
Evaluate
More Steps

Evaluate
2(−x)−3(−(x−1))≥0
Remove the parentheses
2(−x)−3(−x+1)≥0
Simplify the expression
x−3≥0
Move the constant to the right side
x≥0+3
Removing 0 doesn't change the value,so remove it from the expression
x≥3
x≤3,x≥0,x≥1x≥53,x≥0,x<1x≤53,x<0,x≥1x≥3,x<0,x−1<0
Evaluate
More Steps

Evaluate
x−1<0
Move the constant to the right side
x<0+1
Removing 0 doesn't change the value,so remove it from the expression
x<1
x≤3,x≥0,x≥1x≥53,x≥0,x<1x≤53,x<0,x≥1x≥3,x<0,x<1
Find the intersection
1≤x≤3x≥53,x≥0,x<1x≤53,x<0,x≥1x≥3,x<0,x<1
Find the intersection
1≤x≤353≤x<1x≤53,x<0,x≥1x≥3,x<0,x<1
Find the intersection
1≤x≤353≤x<1x∈∅x≥3,x<0,x<1
Find the intersection
1≤x≤353≤x<1x∈∅x∈∅
Find the union
53≤x≤3
{53≤x≤3∣x−1∣>0{2∣x∣−3∣x−1∣≤0∣x−1∣<0
Solve the inequality
More Steps

Evaluate
∣x−1∣>0
Since the left-hand side is always positive or 0,and the right-hand side is always 0,the statement is true for any value of x,except when ∣x−1∣=0
∣x−1∣=0
Rewrite the expression
x−1=0
Move the constant to the right-hand side and change its sign
x=0+1
Removing 0 doesn't change the value,so remove it from the expression
x=1
Exclude the impossible values of x
x=1
{53≤x≤3x=1{2∣x∣−3∣x−1∣≤0∣x−1∣<0
Solve the inequality
More Steps

Evaluate
2∣x∣−3∣x−1∣≤0
Separate the inequality into 4 possible cases
2x−3(x−1)≤0,x≥0,x−1≥02x−3(−(x−1))≤0,x≥0,x−1<02(−x)−3(x−1)≤0,x<0,x−1≥02(−x)−3(−(x−1))≤0,x<0,x−1<0
Evaluate
More Steps

Evaluate
2x−3(x−1)≤0
Simplify the expression
−x+3≤0
Move the constant to the right side
−x≤0−3
Removing 0 doesn't change the value,so remove it from the expression
−x≤−3
Change the signs on both sides of the inequality and flip the inequality sign
x≥3
x≥3,x≥0,x−1≥02x−3(−(x−1))≤0,x≥0,x−1<02(−x)−3(x−1)≤0,x<0,x−1≥02(−x)−3(−(x−1))≤0,x<0,x−1<0
Evaluate
More Steps

Evaluate
x−1≥0
Move the constant to the right side
x≥0+1
Removing 0 doesn't change the value,so remove it from the expression
x≥1
x≥3,x≥0,x≥12x−3(−(x−1))≤0,x≥0,x−1<02(−x)−3(x−1)≤0,x<0,x−1≥02(−x)−3(−(x−1))≤0,x<0,x−1<0
Evaluate
More Steps

Evaluate
2x−3(−(x−1))≤0
Remove the parentheses
2x−3(−x+1)≤0
Simplify the expression
5x−3≤0
Move the constant to the right side
5x≤0+3
Removing 0 doesn't change the value,so remove it from the expression
5x≤3
Divide both sides
55x≤53
Divide the numbers
x≤53
x≥3,x≥0,x≥1x≤53,x≥0,x−1<02(−x)−3(x−1)≤0,x<0,x−1≥02(−x)−3(−(x−1))≤0,x<0,x−1<0
Evaluate
More Steps

Evaluate
x−1<0
Move the constant to the right side
x<0+1
Removing 0 doesn't change the value,so remove it from the expression
x<1
x≥3,x≥0,x≥1x≤53,x≥0,x<12(−x)−3(x−1)≤0,x<0,x−1≥02(−x)−3(−(x−1))≤0,x<0,x−1<0
Evaluate
More Steps

Evaluate
2(−x)−3(x−1)≤0
Simplify the expression
−5x+3≤0
Move the constant to the right side
−5x≤0−3
Removing 0 doesn't change the value,so remove it from the expression
−5x≤−3
Change the signs on both sides of the inequality and flip the inequality sign
5x≥3
Divide both sides
55x≥53
Divide the numbers
x≥53
x≥3,x≥0,x≥1x≤53,x≥0,x<1x≥53,x<0,x−1≥02(−x)−3(−(x−1))≤0,x<0,x−1<0
Evaluate
More Steps

Evaluate
x−1≥0
Move the constant to the right side
x≥0+1
Removing 0 doesn't change the value,so remove it from the expression
x≥1
x≥3,x≥0,x≥1x≤53,x≥0,x<1x≥53,x<0,x≥12(−x)−3(−(x−1))≤0,x<0,x−1<0
Evaluate
More Steps

Evaluate
2(−x)−3(−(x−1))≤0
Remove the parentheses
2(−x)−3(−x+1)≤0
Simplify the expression
x−3≤0
Move the constant to the right side
x≤0+3
Removing 0 doesn't change the value,so remove it from the expression
x≤3
x≥3,x≥0,x≥1x≤53,x≥0,x<1x≥53,x<0,x≥1x≤3,x<0,x−1<0
Evaluate
More Steps

Evaluate
x−1<0
Move the constant to the right side
x<0+1
Removing 0 doesn't change the value,so remove it from the expression
x<1
x≥3,x≥0,x≥1x≤53,x≥0,x<1x≥53,x<0,x≥1x≤3,x<0,x<1
Find the intersection
x≥3x≤53,x≥0,x<1x≥53,x<0,x≥1x≤3,x<0,x<1
Find the intersection
x≥30≤x≤53x≥53,x<0,x≥1x≤3,x<0,x<1
Find the intersection
x≥30≤x≤53x∈∅x≤3,x<0,x<1
Find the intersection
x≥30≤x≤53x∈∅x<0
Find the union
x∈(−∞,53]∪[3,+∞)
{53≤x≤3x=1{x∈(−∞,53]∪[3,+∞)∣x−1∣<0
Since the left-hand side is always positive or 0,and the right-hand side is always 0,the statement is false for any value of x
{53≤x≤3x=1{x∈(−∞,53]∪[3,+∞)x∈/R
Find the intersection
x∈[53,1)∪(1,3]{x∈(−∞,53]∪[3,+∞)x∈/R
Find the intersection
x∈[53,1)∪(1,3]x∈/R
Find the union
x∈[53,1)∪(1,3]
Check if the solution is in the defined range
x∈[53,1)∪(1,3],x=1
Solution
x∈[53,1)∪(1,3]
Show Solution
