Question
Solve the equation
x1=4881−561,x2=4881+561
Alternative Form
x1≈1.194053,x2≈2.180947
Evaluate
(3x−1)2−5x2−(2x−3)2×7×6=3∣6x−1∣
Simplify
More Steps

Evaluate
(3x−1)2−5x2−(2x−3)2×7×6
Use the commutative property to reorder the terms
(3x−1)2−5x2−7(2x−3)2×6
Subtract the terms
More Steps

Evaluate
(3x−1)2−5x2−7(2x−3)2
Expand the expression
9x2−6x+1−5x2−7(2x−3)2
Expand the expression
9x2−6x+1−5x2−28x2+84x−63
Subtract the terms
−24x2−6x+1+84x−63
Add the terms
−24x2+78x+1−63
Subtract the numbers
−24x2+78x−62
−24x2+78x−62×6
Calculate the absolute value
24x2−78x+62×6
Multiply the terms
624x2−78x+62
624x2−78x+62=3∣6x−1∣
Move the expression to the left side
624x2−78x+62−3∣6x−1∣=0
Separate the equation into 4 possible cases
6(24x2−78x+62)−3(6x−1)=0,24x2−78x+62≥0,6x−1≥06(24x2−78x+62)−3(−(6x−1))=0,24x2−78x+62≥0,6x−1<06(−(24x2−78x+62))−3(6x−1)=0,24x2−78x+62<0,6x−1≥06(−(24x2−78x+62))−3(−(6x−1))=0,24x2−78x+62<0,6x−1<0
Solve the equation
More Steps

Evaluate
6(24x2−78x+62)−3(6x−1)=0
Calculate
More Steps

Evaluate
6(24x2−78x+62)−3(6x−1)
Expand the expression
144x2−468x+372−3(6x−1)
Expand the expression
144x2−468x+372−18x+3
Subtract the terms
144x2−486x+372+3
Add the numbers
144x2−486x+375
144x2−486x+375=0
Substitute a=144,b=−486 and c=375 into the quadratic formula x=2a−b±b2−4ac
x=2×144486±(−486)2−4×144×375
Simplify the expression
x=288486±(−486)2−4×144×375
Simplify the expression
More Steps

Evaluate
(−486)2−4×144×375
Multiply the terms
(−486)2−216000
Calculate
4862−216000
x=288486±4862−216000
Simplify the radical expression
More Steps

Evaluate
4862−216000
Expand the expression
20196
Write the expression as a product where the root of one of the factors can be evaluated
36×561
Write the number in exponential form with the base of 6
62×561
The root of a product is equal to the product of the roots of each factor
62×561
Reduce the index of the radical and exponent with 2
6561
x=288486±6561
Separate the equation into 2 possible cases
x=288486+6561x=288486−6561
Simplify the expression
x=4881+561x=288486−6561
Simplify the expression
x=4881+561x=4881−561
x=4881+561x=4881−561,24x2−78x+62≥0,6x−1≥06(24x2−78x+62)−3(−(6x−1))=0,24x2−78x+62≥0,6x−1<06(−(24x2−78x+62))−3(6x−1)=0,24x2−78x+62<0,6x−1≥06(−(24x2−78x+62))−3(−(6x−1))=0,24x2−78x+62<0,6x−1<0
Solve the inequality
More Steps

Evaluate
24x2−78x+62≥0
Move the constant to the right side
24x2−78x≥0−62
Add the terms
24x2−78x≥−62
Evaluate
x2−413x≥−1231
Add the same value to both sides
x2−413x+64169≥−1231+64169
Evaluate
x2−413x+64169≥19211
Evaluate
(x−813)2≥19211
Take the 2-th root on both sides of the inequality
(x−813)2≥19211
Calculate
x−813≥2433
Separate the inequality into 2 possible cases
x−813≥2433x−813≤−2433
Calculate
More Steps

Evaluate
x−813≥2433
Move the constant to the right side
x≥2433+813
Add the numbers
x≥2433+39
x≥2433+39x−813≤−2433
Calculate
More Steps

Evaluate
x−813≤−2433
Move the constant to the right side
x≤−2433+813
Add the numbers
x≤24−33+39
x≥2433+39x≤24−33+39
Find the union
x∈(−∞,24−33+39]∪[2433+39,+∞)
x=4881+561x=4881−561,x∈(−∞,24−33+39]∪[2433+39,+∞),6x−1≥06(24x2−78x+62)−3(−(6x−1))=0,24x2−78x+62≥0,6x−1<06(−(24x2−78x+62))−3(6x−1)=0,24x2−78x+62<0,6x−1≥06(−(24x2−78x+62))−3(−(6x−1))=0,24x2−78x+62<0,6x−1<0
Solve the inequality
More Steps

Evaluate
6x−1≥0
Move the constant to the right side
6x≥0+1
Removing 0 doesn't change the value,so remove it from the expression
6x≥1
Divide both sides
66x≥61
Divide the numbers
x≥61
x=4881+561x=4881−561,x∈(−∞,24−33+39]∪[2433+39,+∞),x≥616(24x2−78x+62)−3(−(6x−1))=0,24x2−78x+62≥0,6x−1<06(−(24x2−78x+62))−3(6x−1)=0,24x2−78x+62<0,6x−1≥06(−(24x2−78x+62))−3(−(6x−1))=0,24x2−78x+62<0,6x−1<0
Solve the equation
More Steps

Evaluate
6(24x2−78x+62)−3(−(6x−1))=0
Calculate
6(24x2−78x+62)−3(−6x+1)=0
Calculate
More Steps

Evaluate
6(24x2−78x+62)−3(−6x+1)
Expand the expression
144x2−468x+372−3(−6x+1)
Expand the expression
144x2−468x+372+18x−3
Add the terms
144x2−450x+372−3
Subtract the numbers
144x2−450x+369
144x2−450x+369=0
Substitute a=144,b=−450 and c=369 into the quadratic formula x=2a−b±b2−4ac
x=2×144450±(−450)2−4×144×369
Simplify the expression
x=288450±(−450)2−4×144×369
Simplify the expression
More Steps

Evaluate
(−450)2−4×144×369
Multiply the terms
(−450)2−212544
Calculate
4502−212544
x=288450±4502−212544
The expression is undefined in the set of real numbers
x∈/R
x=4881+561x=4881−561,x∈(−∞,24−33+39]∪[2433+39,+∞),x≥61x∈/R,24x2−78x+62≥0,6x−1<06(−(24x2−78x+62))−3(6x−1)=0,24x2−78x+62<0,6x−1≥06(−(24x2−78x+62))−3(−(6x−1))=0,24x2−78x+62<0,6x−1<0
Solve the inequality
More Steps

Evaluate
24x2−78x+62≥0
Move the constant to the right side
24x2−78x≥0−62
Add the terms
24x2−78x≥−62
Evaluate
x2−413x≥−1231
Add the same value to both sides
x2−413x+64169≥−1231+64169
Evaluate
x2−413x+64169≥19211
Evaluate
(x−813)2≥19211
Take the 2-th root on both sides of the inequality
(x−813)2≥19211
Calculate
x−813≥2433
Separate the inequality into 2 possible cases
x−813≥2433x−813≤−2433
Calculate
More Steps

Evaluate
x−813≥2433
Move the constant to the right side
x≥2433+813
Add the numbers
x≥2433+39
x≥2433+39x−813≤−2433
Calculate
More Steps

Evaluate
x−813≤−2433
Move the constant to the right side
x≤−2433+813
Add the numbers
x≤24−33+39
x≥2433+39x≤24−33+39
Find the union
x∈(−∞,24−33+39]∪[2433+39,+∞)
x=4881+561x=4881−561,x∈(−∞,24−33+39]∪[2433+39,+∞),x≥61x∈/R,x∈(−∞,24−33+39]∪[2433+39,+∞),6x−1<06(−(24x2−78x+62))−3(6x−1)=0,24x2−78x+62<0,6x−1≥06(−(24x2−78x+62))−3(−(6x−1))=0,24x2−78x+62<0,6x−1<0
Solve the inequality
More Steps

Evaluate
6x−1<0
Move the constant to the right side
6x<0+1
Removing 0 doesn't change the value,so remove it from the expression
6x<1
Divide both sides
66x<61
Divide the numbers
x<61
x=4881+561x=4881−561,x∈(−∞,24−33+39]∪[2433+39,+∞),x≥61x∈/R,x∈(−∞,24−33+39]∪[2433+39,+∞),x<616(−(24x2−78x+62))−3(6x−1)=0,24x2−78x+62<0,6x−1≥06(−(24x2−78x+62))−3(−(6x−1))=0,24x2−78x+62<0,6x−1<0
Solve the equation
More Steps

Evaluate
6(−(24x2−78x+62))−3(6x−1)=0
Calculate
6(−24x2+78x−62)−3(6x−1)=0
Calculate
More Steps

Evaluate
6(−24x2+78x−62)−3(6x−1)
Expand the expression
−144x2+468x−372−3(6x−1)
Expand the expression
−144x2+468x−372−18x+3
Subtract the terms
−144x2+450x−372+3
Add the numbers
−144x2+450x−369
−144x2+450x−369=0
Multiply both sides
144x2−450x+369=0
Substitute a=144,b=−450 and c=369 into the quadratic formula x=2a−b±b2−4ac
x=2×144450±(−450)2−4×144×369
Simplify the expression
x=288450±(−450)2−4×144×369
Simplify the expression
More Steps

Evaluate
(−450)2−4×144×369
Multiply the terms
(−450)2−212544
Calculate
4502−212544
x=288450±4502−212544
The expression is undefined in the set of real numbers
x∈/R
x=4881+561x=4881−561,x∈(−∞,24−33+39]∪[2433+39,+∞),x≥61x∈/R,x∈(−∞,24−33+39]∪[2433+39,+∞),x<61x∈/R,24x2−78x+62<0,6x−1≥06(−(24x2−78x+62))−3(−(6x−1))=0,24x2−78x+62<0,6x−1<0
Solve the inequality
More Steps

Evaluate
24x2−78x+62<0
Move the constant to the right side
24x2−78x<0−62
Add the terms
24x2−78x<−62
Evaluate
x2−413x<−1231
Add the same value to both sides
x2−413x+64169<−1231+64169
Evaluate
x2−413x+64169<19211
Evaluate
(x−813)2<19211
Take the 2-th root on both sides of the inequality
(x−813)2<19211
Calculate
x−813<2433
Separate the inequality into 2 possible cases
{x−813<2433x−813>−2433
Calculate
More Steps

Evaluate
x−813<2433
Move the constant to the right side
x<2433+813
Add the numbers
x<2433+39
{x<2433+39x−813>−2433
Calculate
More Steps

Evaluate
x−813>−2433
Move the constant to the right side
x>−2433+813
Add the numbers
x>24−33+39
{x<2433+39x>24−33+39
Find the intersection
24−33+39<x<2433+39
x=4881+561x=4881−561,x∈(−∞,24−33+39]∪[2433+39,+∞),x≥61x∈/R,x∈(−∞,24−33+39]∪[2433+39,+∞),x<61x∈/R,24−33+39<x<2433+39,6x−1≥06(−(24x2−78x+62))−3(−(6x−1))=0,24x2−78x+62<0,6x−1<0
Solve the inequality
More Steps

Evaluate
6x−1≥0
Move the constant to the right side
6x≥0+1
Removing 0 doesn't change the value,so remove it from the expression
6x≥1
Divide both sides
66x≥61
Divide the numbers
x≥61
x=4881+561x=4881−561,x∈(−∞,24−33+39]∪[2433+39,+∞),x≥61x∈/R,x∈(−∞,24−33+39]∪[2433+39,+∞),x<61x∈/R,24−33+39<x<2433+39,x≥616(−(24x2−78x+62))−3(−(6x−1))=0,24x2−78x+62<0,6x−1<0
Solve the equation
More Steps

Evaluate
6(−(24x2−78x+62))−3(−(6x−1))=0
Calculate
6(−24x2+78x−62)−3(−6x+1)=0
Calculate
More Steps

Evaluate
6(−24x2+78x−62)−3(−6x+1)
Expand the expression
−144x2+468x−372−3(−6x+1)
Expand the expression
−144x2+468x−372+18x−3
Add the terms
−144x2+486x−372−3
Subtract the numbers
−144x2+486x−375
−144x2+486x−375=0
Multiply both sides
144x2−486x+375=0
Substitute a=144,b=−486 and c=375 into the quadratic formula x=2a−b±b2−4ac
x=2×144486±(−486)2−4×144×375
Simplify the expression
x=288486±(−486)2−4×144×375
Simplify the expression
More Steps

Evaluate
(−486)2−4×144×375
Multiply the terms
(−486)2−216000
Calculate
4862−216000
x=288486±4862−216000
Simplify the radical expression
More Steps

Evaluate
4862−216000
Expand the expression
20196
Write the expression as a product where the root of one of the factors can be evaluated
36×561
Write the number in exponential form with the base of 6
62×561
The root of a product is equal to the product of the roots of each factor
62×561
Reduce the index of the radical and exponent with 2
6561
x=288486±6561
Separate the equation into 2 possible cases
x=288486+6561x=288486−6561
Simplify the expression
x=4881+561x=288486−6561
Simplify the expression
x=4881+561x=4881−561
x=4881+561x=4881−561,x∈(−∞,24−33+39]∪[2433+39,+∞),x≥61x∈/R,x∈(−∞,24−33+39]∪[2433+39,+∞),x<61x∈/R,24−33+39<x<2433+39,x≥61x=4881+561x=4881−561,24x2−78x+62<0,6x−1<0
Solve the inequality
More Steps

Evaluate
24x2−78x+62<0
Move the constant to the right side
24x2−78x<0−62
Add the terms
24x2−78x<−62
Evaluate
x2−413x<−1231
Add the same value to both sides
x2−413x+64169<−1231+64169
Evaluate
x2−413x+64169<19211
Evaluate
(x−813)2<19211
Take the 2-th root on both sides of the inequality
(x−813)2<19211
Calculate
x−813<2433
Separate the inequality into 2 possible cases
{x−813<2433x−813>−2433
Calculate
More Steps

Evaluate
x−813<2433
Move the constant to the right side
x<2433+813
Add the numbers
x<2433+39
{x<2433+39x−813>−2433
Calculate
More Steps

Evaluate
x−813>−2433
Move the constant to the right side
x>−2433+813
Add the numbers
x>24−33+39
{x<2433+39x>24−33+39
Find the intersection
24−33+39<x<2433+39
x=4881+561x=4881−561,x∈(−∞,24−33+39]∪[2433+39,+∞),x≥61x∈/R,x∈(−∞,24−33+39]∪[2433+39,+∞),x<61x∈/R,24−33+39<x<2433+39,x≥61x=4881+561x=4881−561,24−33+39<x<2433+39,6x−1<0
Solve the inequality
More Steps

Evaluate
6x−1<0
Move the constant to the right side
6x<0+1
Removing 0 doesn't change the value,so remove it from the expression
6x<1
Divide both sides
66x<61
Divide the numbers
x<61
x=4881+561x=4881−561,x∈(−∞,24−33+39]∪[2433+39,+∞),x≥61x∈/R,x∈(−∞,24−33+39]∪[2433+39,+∞),x<61x∈/R,24−33+39<x<2433+39,x≥61x=4881+561x=4881−561,24−33+39<x<2433+39,x<61
Find the intersection
x=4881+561x=4881−561x∈/R,x∈(−∞,24−33+39]∪[2433+39,+∞),x<61x∈/R,24−33+39<x<2433+39,x≥61x=4881+561x=4881−561,24−33+39<x<2433+39,x<61
Find the intersection
x=4881+561x=4881−561x∈/Rx∈/R,24−33+39<x<2433+39,x≥61x=4881+561x=4881−561,24−33+39<x<2433+39,x<61
Find the intersection
x=4881+561x=4881−561x∈/Rx∈/Rx=4881+561x=4881−561,24−33+39<x<2433+39,x<61
Find the intersection
x=4881+561x=4881−561x∈/Rx∈/Rx∈∅
Find the union
x=4881+561x=4881−561
Solution
x1=4881−561,x2=4881+561
Alternative Form
x1≈1.194053,x2≈2.180947
Show Solution
