Question
Simplify the expression
132x+130
Evaluate
∣−11∣×x∣12∣−(−130)
Since −11<0,the absolute value of −11 is 11
11x∣12∣−(−130)
When the expression in absolute value bars is not negative, remove the bars
11x×12−(−130)
Multiply the terms
132x−(−130)
Solution
132x+130
Show Solution

Factor the expression
2(66x+65)
Evaluate
∣−11∣×x∣12∣−(−130)
Since −11<0,the absolute value of −11 is 11
11x∣12∣−(−130)
When the expression in absolute value bars is not negative, remove the bars
11x×12−(−130)
Multiply the terms
132x−(−130)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
132x+130
Solution
2(66x+65)
Show Solution

Find the roots
x=−6665
Alternative Form
x=−0.98˙4˙
Evaluate
∣−11∣×x∣12∣−(−130)
To find the roots of the expression,set the expression equal to 0
∣−11∣×x∣12∣−(−130)=0
Since −11<0,the absolute value of −11 is 11
11x∣12∣−(−130)=0
When the expression in absolute value bars is not negative, remove the bars
11x×12−(−130)=0
Multiply the terms
132x−(−130)=0
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
132x+130=0
Move the constant to the right-hand side and change its sign
132x=0−130
Removing 0 doesn't change the value,so remove it from the expression
132x=−130
Divide both sides
132132x=132−130
Divide the numbers
x=132−130
Solution
More Steps

Evaluate
132−130
Cancel out the common factor 2
66−65
Use b−a=−ba=−ba to rewrite the fraction
−6665
x=−6665
Alternative Form
x=−0.98˙4˙
Show Solution
