Question
Solve the inequality
x∈(−∞,0)∪(0,335)∪(275,+∞)
Evaluate
x2−12>56
Find the domain
x2−12>56,x=0
Simplify
More Steps

Evaluate
x2−12
Rewrite the expression
2(x1−6)
Rewrite the expression
2x1−6
2x1−6>56
Calculate
5∣x∣10∣1−6x∣−6∣x∣>0
Separate the inequality into 2 possible cases
{10∣1−6x∣−6∣x∣>05∣x∣>0{10∣1−6x∣−6∣x∣<05∣x∣<0
Solve the inequality
More Steps

Evaluate
10∣1−6x∣−6∣x∣>0
Separate the inequality into 4 possible cases
10(1−6x)−6x>0,1−6x≥0,x≥010(1−6x)−6(−x)>0,1−6x≥0,x<010(−(1−6x))−6x>0,1−6x<0,x≥010(−(1−6x))−6(−x)>0,1−6x<0,x<0
Evaluate
More Steps

Evaluate
10(1−6x)−6x>0
Simplify the expression
10−66x>0
Move the constant to the right side
−66x>0−10
Removing 0 doesn't change the value,so remove it from the expression
−66x>−10
Change the signs on both sides of the inequality and flip the inequality sign
66x<10
Divide both sides
6666x<6610
Divide the numbers
x<6610
Cancel out the common factor 2
x<335
x<335,1−6x≥0,x≥010(1−6x)−6(−x)>0,1−6x≥0,x<010(−(1−6x))−6x>0,1−6x<0,x≥010(−(1−6x))−6(−x)>0,1−6x<0,x<0
Evaluate
More Steps

Evaluate
1−6x≥0
Move the constant to the right side
−6x≥0−1
Removing 0 doesn't change the value,so remove it from the expression
−6x≥−1
Change the signs on both sides of the inequality and flip the inequality sign
6x≤1
Divide both sides
66x≤61
Divide the numbers
x≤61
x<335,x≤61,x≥010(1−6x)−6(−x)>0,1−6x≥0,x<010(−(1−6x))−6x>0,1−6x<0,x≥010(−(1−6x))−6(−x)>0,1−6x<0,x<0
Evaluate
More Steps

Evaluate
10(1−6x)−6(−x)>0
Simplify the expression
10−54x>0
Move the constant to the right side
−54x>0−10
Removing 0 doesn't change the value,so remove it from the expression
−54x>−10
Change the signs on both sides of the inequality and flip the inequality sign
54x<10
Divide both sides
5454x<5410
Divide the numbers
x<5410
Cancel out the common factor 2
x<275
x<335,x≤61,x≥0x<275,1−6x≥0,x<010(−(1−6x))−6x>0,1−6x<0,x≥010(−(1−6x))−6(−x)>0,1−6x<0,x<0
Evaluate
More Steps

Evaluate
1−6x≥0
Move the constant to the right side
−6x≥0−1
Removing 0 doesn't change the value,so remove it from the expression
−6x≥−1
Change the signs on both sides of the inequality and flip the inequality sign
6x≤1
Divide both sides
66x≤61
Divide the numbers
x≤61
x<335,x≤61,x≥0x<275,x≤61,x<010(−(1−6x))−6x>0,1−6x<0,x≥010(−(1−6x))−6(−x)>0,1−6x<0,x<0
Evaluate
More Steps

Evaluate
10(−(1−6x))−6x>0
Remove the parentheses
10(−1+6x)−6x>0
Simplify the expression
−10+54x>0
Move the constant to the right side
54x>0+10
Removing 0 doesn't change the value,so remove it from the expression
54x>10
Divide both sides
5454x>5410
Divide the numbers
x>5410
Cancel out the common factor 2
x>275
x<335,x≤61,x≥0x<275,x≤61,x<0x>275,1−6x<0,x≥010(−(1−6x))−6(−x)>0,1−6x<0,x<0
Evaluate
More Steps

Evaluate
1−6x<0
Move the constant to the right side
−6x<0−1
Removing 0 doesn't change the value,so remove it from the expression
−6x<−1
Change the signs on both sides of the inequality and flip the inequality sign
6x>1
Divide both sides
66x>61
Divide the numbers
x>61
x<335,x≤61,x≥0x<275,x≤61,x<0x>275,x>61,x≥010(−(1−6x))−6(−x)>0,1−6x<0,x<0
Evaluate
More Steps

Evaluate
10(−(1−6x))−6(−x)>0
Remove the parentheses
10(−1+6x)−6(−x)>0
Simplify the expression
−10+66x>0
Move the constant to the right side
66x>0+10
Removing 0 doesn't change the value,so remove it from the expression
66x>10
Divide both sides
6666x>6610
Divide the numbers
x>6610
Cancel out the common factor 2
x>335
x<335,x≤61,x≥0x<275,x≤61,x<0x>275,x>61,x≥0x>335,1−6x<0,x<0
Evaluate
More Steps

Evaluate
1−6x<0
Move the constant to the right side
−6x<0−1
Removing 0 doesn't change the value,so remove it from the expression
−6x<−1
Change the signs on both sides of the inequality and flip the inequality sign
6x>1
Divide both sides
66x>61
Divide the numbers
x>61
x<335,x≤61,x≥0x<275,x≤61,x<0x>275,x>61,x≥0x>335,x>61,x<0
Find the intersection
0≤x<335x<275,x≤61,x<0x>275,x>61,x≥0x>335,x>61,x<0
Find the intersection
0≤x<335x<0x>275,x>61,x≥0x>335,x>61,x<0
Find the intersection
0≤x<335x<0x>275x>335,x>61,x<0
Find the intersection
0≤x<335x<0x>275x∈∅
Find the union
x∈(−∞,335)∪(275,+∞)
{x∈(−∞,335)∪(275,+∞)5∣x∣>0{10∣1−6x∣−6∣x∣<05∣x∣<0
Solve the inequality
More Steps

Evaluate
5∣x∣>0
Since the left-hand side is always positive or 0,and the right-hand side is always 0,the statement is true for any value of x,except when 5∣x∣=0
5∣x∣=0
Rewrite the expression
∣x∣=0
Evaluate
x=0
Exclude the impossible values of x
x=0
{x∈(−∞,335)∪(275,+∞)x=0{10∣1−6x∣−6∣x∣<05∣x∣<0
Solve the inequality
More Steps

Evaluate
10∣1−6x∣−6∣x∣<0
Separate the inequality into 4 possible cases
10(1−6x)−6x<0,1−6x≥0,x≥010(1−6x)−6(−x)<0,1−6x≥0,x<010(−(1−6x))−6x<0,1−6x<0,x≥010(−(1−6x))−6(−x)<0,1−6x<0,x<0
Evaluate
More Steps

Evaluate
10(1−6x)−6x<0
Simplify the expression
10−66x<0
Move the constant to the right side
−66x<0−10
Removing 0 doesn't change the value,so remove it from the expression
−66x<−10
Change the signs on both sides of the inequality and flip the inequality sign
66x>10
Divide both sides
6666x>6610
Divide the numbers
x>6610
Cancel out the common factor 2
x>335
x>335,1−6x≥0,x≥010(1−6x)−6(−x)<0,1−6x≥0,x<010(−(1−6x))−6x<0,1−6x<0,x≥010(−(1−6x))−6(−x)<0,1−6x<0,x<0
Evaluate
More Steps

Evaluate
1−6x≥0
Move the constant to the right side
−6x≥0−1
Removing 0 doesn't change the value,so remove it from the expression
−6x≥−1
Change the signs on both sides of the inequality and flip the inequality sign
6x≤1
Divide both sides
66x≤61
Divide the numbers
x≤61
x>335,x≤61,x≥010(1−6x)−6(−x)<0,1−6x≥0,x<010(−(1−6x))−6x<0,1−6x<0,x≥010(−(1−6x))−6(−x)<0,1−6x<0,x<0
Evaluate
More Steps

Evaluate
10(1−6x)−6(−x)<0
Simplify the expression
10−54x<0
Move the constant to the right side
−54x<0−10
Removing 0 doesn't change the value,so remove it from the expression
−54x<−10
Change the signs on both sides of the inequality and flip the inequality sign
54x>10
Divide both sides
5454x>5410
Divide the numbers
x>5410
Cancel out the common factor 2
x>275
x>335,x≤61,x≥0x>275,1−6x≥0,x<010(−(1−6x))−6x<0,1−6x<0,x≥010(−(1−6x))−6(−x)<0,1−6x<0,x<0
Evaluate
More Steps

Evaluate
1−6x≥0
Move the constant to the right side
−6x≥0−1
Removing 0 doesn't change the value,so remove it from the expression
−6x≥−1
Change the signs on both sides of the inequality and flip the inequality sign
6x≤1
Divide both sides
66x≤61
Divide the numbers
x≤61
x>335,x≤61,x≥0x>275,x≤61,x<010(−(1−6x))−6x<0,1−6x<0,x≥010(−(1−6x))−6(−x)<0,1−6x<0,x<0
Evaluate
More Steps

Evaluate
10(−(1−6x))−6x<0
Remove the parentheses
10(−1+6x)−6x<0
Simplify the expression
−10+54x<0
Move the constant to the right side
54x<0+10
Removing 0 doesn't change the value,so remove it from the expression
54x<10
Divide both sides
5454x<5410
Divide the numbers
x<5410
Cancel out the common factor 2
x<275
x>335,x≤61,x≥0x>275,x≤61,x<0x<275,1−6x<0,x≥010(−(1−6x))−6(−x)<0,1−6x<0,x<0
Evaluate
More Steps

Evaluate
1−6x<0
Move the constant to the right side
−6x<0−1
Removing 0 doesn't change the value,so remove it from the expression
−6x<−1
Change the signs on both sides of the inequality and flip the inequality sign
6x>1
Divide both sides
66x>61
Divide the numbers
x>61
x>335,x≤61,x≥0x>275,x≤61,x<0x<275,x>61,x≥010(−(1−6x))−6(−x)<0,1−6x<0,x<0
Evaluate
More Steps

Evaluate
10(−(1−6x))−6(−x)<0
Remove the parentheses
10(−1+6x)−6(−x)<0
Simplify the expression
−10+66x<0
Move the constant to the right side
66x<0+10
Removing 0 doesn't change the value,so remove it from the expression
66x<10
Divide both sides
6666x<6610
Divide the numbers
x<6610
Cancel out the common factor 2
x<335
x>335,x≤61,x≥0x>275,x≤61,x<0x<275,x>61,x≥0x<335,1−6x<0,x<0
Evaluate
More Steps

Evaluate
1−6x<0
Move the constant to the right side
−6x<0−1
Removing 0 doesn't change the value,so remove it from the expression
−6x<−1
Change the signs on both sides of the inequality and flip the inequality sign
6x>1
Divide both sides
66x>61
Divide the numbers
x>61
x>335,x≤61,x≥0x>275,x≤61,x<0x<275,x>61,x≥0x<335,x>61,x<0
Find the intersection
335<x≤61x>275,x≤61,x<0x<275,x>61,x≥0x<335,x>61,x<0
Find the intersection
335<x≤61x∈∅x<275,x>61,x≥0x<335,x>61,x<0
Find the intersection
335<x≤61x∈∅61<x<275x<335,x>61,x<0
Find the intersection
335<x≤61x∈∅61<x<275x∈∅
Find the union
335<x<275
{x∈(−∞,335)∪(275,+∞)x=0{335<x<2755∣x∣<0
Since the left-hand side is always positive or 0,and the right-hand side is always 0,the statement is false for any value of x
{x∈(−∞,335)∪(275,+∞)x=0{335<x<275x∈/R
Find the intersection
x∈(−∞,0)∪(0,335)∪(275,+∞){335<x<275x∈/R
Find the intersection
x∈(−∞,0)∪(0,335)∪(275,+∞)x∈/R
Find the union
x∈(−∞,0)∪(0,335)∪(275,+∞)
Check if the solution is in the defined range
x∈(−∞,0)∪(0,335)∪(275,+∞),x=0
Solution
x∈(−∞,0)∪(0,335)∪(275,+∞)
Show Solution
