Question
∣2x×1∣∣3x−4∣×5
Simplify the expression
103x2−4x
Evaluate
∣2x×1∣∣3x−4∣×5
Multiply the terms
∣2x∣∣3x−4∣×5
Calculate the absolute value
2∣x∣∣3x−4∣×5
Multiply the terms
10∣x∣∣3x−4∣
Multiply the terms
10∣x(3x−4)∣
Solution
More Steps

Evaluate
x(3x−4)
Apply the distributive property
x×3x−x×4
Multiply the terms
More Steps

Evaluate
x×3x
Use the commutative property to reorder the terms
3x×x
Multiply the terms
3x2
3x2−x×4
Use the commutative property to reorder the terms
3x2−4x
103x2−4x
Show Solution

Find the roots
x1=0,x2=34
Alternative Form
x1=0,x2=1.3˙
Evaluate
∣2x×1∣∣3x−4∣×5
To find the roots of the expression,set the expression equal to 0
∣2x×1∣∣3x−4∣×5=0
Multiply the terms
∣2x∣∣3x−4∣×5=0
Calculate the absolute value
2∣x∣∣3x−4∣×5=0
Multiply the terms
More Steps

Multiply the terms
2∣x∣∣3x−4∣×5
Multiply the terms
10∣x∣∣3x−4∣
Multiply the terms
10∣x(3x−4)∣
10∣x(3x−4)∣=0
Rewrite the expression
∣x(3x−4)∣=0
Rewrite the expression
x(3x−4)=0
Separate the equation into 2 possible cases
x=03x−4=0
Solve the equation
More Steps

Evaluate
3x−4=0
Move the constant to the right-hand side and change its sign
3x=0+4
Removing 0 doesn't change the value,so remove it from the expression
3x=4
Divide both sides
33x=34
Divide the numbers
x=34
x=0x=34
Solution
x1=0,x2=34
Alternative Form
x1=0,x2=1.3˙
Show Solution
