Question
Solve the equation
x1=64−46,x2=64+46
Alternative Form
x1≈−0.463722,x2≈1.797055
Evaluate
∣2x×1∣∣3x−4∣=5
Simplify
More Steps

Evaluate
∣2x×1∣∣3x−4∣
Multiply the terms
∣2x∣∣3x−4∣
Multiply the terms
∣2x(3x−4)∣
∣2x(3x−4)∣=5
Separate the equation into 2 possible cases
2x(3x−4)=52x(3x−4)=−5
Solve the equation for x
More Steps

Evaluate
2x(3x−4)=5
Expand the expression
More Steps

Evaluate
2x(3x−4)
Apply the distributive property
2x×3x−2x×4
Multiply the terms
6x2−2x×4
Multiply the numbers
6x2−8x
6x2−8x=5
Move the expression to the left side
6x2−8x−5=0
Substitute a=6,b=−8 and c=−5 into the quadratic formula x=2a−b±b2−4ac
x=2×68±(−8)2−4×6(−5)
Simplify the expression
x=128±(−8)2−4×6(−5)
Simplify the expression
More Steps

Evaluate
(−8)2−4×6(−5)
Multiply
(−8)2−(−120)
Rewrite the expression
82−(−120)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
82+120
Evaluate the power
64+120
Add the numbers
184
x=128±184
Simplify the radical expression
More Steps

Evaluate
184
Write the expression as a product where the root of one of the factors can be evaluated
4×46
Write the number in exponential form with the base of 2
22×46
The root of a product is equal to the product of the roots of each factor
22×46
Reduce the index of the radical and exponent with 2
246
x=128±246
Separate the equation into 2 possible cases
x=128+246x=128−246
Simplify the expression
x=64+46x=128−246
Simplify the expression
x=64+46x=64−46
x=64+46x=64−462x(3x−4)=−5
Solve the equation for x
More Steps

Evaluate
2x(3x−4)=−5
Expand the expression
More Steps

Evaluate
2x(3x−4)
Apply the distributive property
2x×3x−2x×4
Multiply the terms
6x2−2x×4
Multiply the numbers
6x2−8x
6x2−8x=−5
Move the expression to the left side
6x2−8x−(−5)=0
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
6x2−8x+5=0
Substitute a=6,b=−8 and c=5 into the quadratic formula x=2a−b±b2−4ac
x=2×68±(−8)2−4×6×5
Simplify the expression
x=128±(−8)2−4×6×5
Simplify the expression
More Steps

Evaluate
(−8)2−4×6×5
Multiply the terms
(−8)2−120
Rewrite the expression
82−120
Evaluate the power
64−120
Subtract the numbers
−56
x=128±−56
The expression is undefined in the set of real numbers
x∈/R
x=64+46x=64−46x∈/R
Find the union
x=64+46x=64−46
Solution
x1=64−46,x2=64+46
Alternative Form
x1≈−0.463722,x2≈1.797055
Show Solution
