Question
Solve the inequality
x∈(−∞,6−85+5]∪[685+5,+∞)
Evaluate
∣3x−5∣∣x×1∣≥5
Simplify
More Steps

Evaluate
∣3x−5∣∣x×1∣
Any expression multiplied by 1 remains the same
∣3x−5∣∣x∣
Multiply the terms
∣x(3x−5)∣
∣x(3x−5)∣≥5
Separate the inequality into 2 possible cases
x(3x−5)≥5x(3x−5)≤−5
Solve the inequality for x
More Steps

Evaluate
x(3x−5)≥5
Expand the expression
More Steps

Evaluate
x(3x−5)
Apply the distributive property
x×3x−x×5
Multiply the terms
3x2−x×5
Use the commutative property to reorder the terms
3x2−5x
3x2−5x≥5
Evaluate
x2−35x≥35
Add the same value to both sides
x2−35x+3625≥35+3625
Evaluate
x2−35x+3625≥3685
Evaluate
(x−65)2≥3685
Take the 2-th root on both sides of the inequality
(x−65)2≥3685
Calculate
x−65≥685
Separate the inequality into 2 possible cases
x−65≥685x−65≤−685
Calculate
More Steps

Evaluate
x−65≥685
Move the constant to the right side
x≥685+65
Write all numerators above the common denominator
x≥685+5
x≥685+5x−65≤−685
Calculate
More Steps

Evaluate
x−65≤−685
Move the constant to the right side
x≤−685+65
Write all numerators above the common denominator
x≤6−85+5
x≥685+5x≤6−85+5
Find the union
x∈(−∞,6−85+5]∪[685+5,+∞)
x∈(−∞,6−85+5]∪[685+5,+∞)x(3x−5)≤−5
Solve the inequality for x
More Steps

Evaluate
x(3x−5)≤−5
Expand the expression
More Steps

Evaluate
x(3x−5)
Apply the distributive property
x×3x−x×5
Multiply the terms
3x2−x×5
Use the commutative property to reorder the terms
3x2−5x
3x2−5x≤−5
Evaluate
x2−35x≤−35
Add the same value to both sides
x2−35x+3625≤−35+3625
Evaluate
x2−35x+3625≤−3635
Evaluate
(x−65)2≤−3635
Calculate
x∈/R
x∈(−∞,6−85+5]∪[685+5,+∞)x∈/R
Solution
x∈(−∞,6−85+5]∪[685+5,+∞)
Show Solution
