Question
Solve the equation
(n1,s1,x1)=(n,0,x),(n,x)∈R2(n2,s2,x2)=(0,s,x),(s,x)∈R2(n3,s3,x3)=(n,s,0),(n,s)∈R2
Evaluate
∣sin×2x∣×pi28×x=0×pi
Simplify
More Steps

Evaluate
∣sin×2x∣×pi28×x
Evaluate the power
∣sin×2x∣×p(−1)8×x
Reduce the fraction
∣sin×2x∣×p−8×x
Multiply the terms
More Steps

Multiply the terms
sin×2x
Use the commutative property to reorder the terms
isn×2x
Multiply the numbers
2isnx
∣2isnx∣×p−8×x
Use b−a=−ba=−ba to rewrite the fraction
∣2isnx∣×(−p8)x
Any expression multiplied by 1 remains the same
−∣2isnx∣×p8×x
Multiply the terms
More Steps

Evaluate
∣2isnx∣×p8×x
Multiply the terms
p8∣2isnx∣×x
Multiply the terms
p8∣2isnx∣×x
−p8∣2isnx∣×x
−p8∣2isnx∣×x=0×pi
Any expression multiplied by 0 equals 0
−p8∣2isnx∣×x=0
Rewrite the expression
p−8∣2isnx∣×x=0
Cross multiply
−8∣2isnx∣×x=p×0
Simplify the equation
−8∣2isnx∣×x=0
Elimination the left coefficient
∣2isnx∣×x=0
Separate the equation into 2 possible cases
∣2isnx∣=0x=0
Solve the equation
More Steps

Evaluate
∣2isnx∣=0
Rewrite the expression
2isnx=0
Evaluate
snx=0
Separate the equation into 3 possible cases
s=0n=0x=0
Find the union
n=0s=0x=0
n=0s=0x=0x=0
Find the union
n=0s=0x=0
Solution
(n1,s1,x1)=(n,0,x),(n,x)∈R2(n2,s2,x2)=(0,s,x),(s,x)∈R2(n3,s3,x3)=(n,s,0),(n,s)∈R2
Show Solution
