Question
Simplify the expression
27x3−x2−x
Evaluate
x2×3x×9−x2−x
Multiply
More Steps

Multiply the terms
x2×3x×9
Multiply the terms with the same base by adding their exponents
x2+1×3×9
Add the numbers
x3×3×9
Multiply the terms
x3×27
Use the commutative property to reorder the terms
27x3
27x3−x2−x
Solution
27x3−x2−x
Show Solution

Find the roots
x1=0,x2=541+109
Alternative Form
x1=0,x2≈0.211858
Evaluate
x2×3x×9−x2−x
To find the roots of the expression,set the expression equal to 0
x2×3x×9−x2−x=0
Multiply
More Steps

Multiply the terms
x2×3x×9
Multiply the terms with the same base by adding their exponents
x2+1×3×9
Add the numbers
x3×3×9
Multiply the terms
x3×27
Use the commutative property to reorder the terms
27x3
27x3−x2−x=0
Calculate the absolute value
27x3−x2−x=0
Separate the equation into 2 possible cases
27x3−x2−x=0,x3≥027(−x3)−x2−x=0,x3<0
Solve the equation
More Steps

Evaluate
27x3−x2−x=0
Factor the expression
x(27x2−x−1)=0
Separate the equation into 2 possible cases
x=027x2−x−1=0
Solve the equation
More Steps

Evaluate
27x2−x−1=0
Substitute a=27,b=−1 and c=−1 into the quadratic formula x=2a−b±b2−4ac
x=2×271±(−1)2−4×27(−1)
Simplify the expression
x=541±(−1)2−4×27(−1)
Simplify the expression
x=541±109
Separate the equation into 2 possible cases
x=541+109x=541−109
x=0x=541+109x=541−109
x=0x=541+109x=541−109,x3≥027(−x3)−x2−x=0,x3<0
The only way a base raised to an odd power can be greater than or equal to 0 is if the base is greater than or equal to 0
x=0x=541+109x=541−109,x≥027(−x3)−x2−x=0,x3<0
Solve the equation
More Steps

Evaluate
27(−x3)−x2−x=0
Calculate
−27x3−x2−x=0
Factor the expression
−x(27x2+x+1)=0
Divide both sides
x(27x2+x+1)=0
Separate the equation into 2 possible cases
x=027x2+x+1=0
Solve the equation
More Steps

Evaluate
27x2+x+1=0
Substitute a=27,b=1 and c=1 into the quadratic formula x=2a−b±b2−4ac
x=2×27−1±12−4×27
Simplify the expression
x=54−1±12−4×27
Simplify the expression
x=54−1±−107
Simplify the radical expression
x=54−1±107×i
Separate the equation into 2 possible cases
x=54−1+107×ix=54−1−107×i
Simplify the expression
x=−541+54107ix=54−1−107×i
Simplify the expression
x=−541+54107ix=−541−54107i
x=0x=−541+54107ix=−541−54107i
x=0x=541+109x=541−109,x≥0x=0x=−541+54107ix=−541−54107i,x3<0
The only way a base raised to an odd power can be less than 0 is if the base is less than 0
x=0x=541+109x=541−109,x≥0x=0x=−541+54107ix=−541−54107i,x<0
Find the intersection
x=0x=541+109x=0x=−541+54107ix=−541−54107i,x<0
Find the intersection
x=0x=541+109x∈∅
Find the union
x=0x=541+109
Solution
x1=0,x2=541+109
Alternative Form
x1=0,x2≈0.211858
Show Solution
