Question
Solve the equation
x1=25−29,x2=0,x3=25−21,x4=25+21,x5=25+29
Alternative Form
x1≈−0.192582,x2=0,x3≈0.208712,x4≈4.791288,x5≈5.192582
Evaluate
x2∣x−5∣=∣x∣
When the expression in absolute value bars is not negative, remove the bars
x2∣x−5∣=∣x∣
Swap the sides
∣x∣=x2∣x−5∣
Move the expression to the left side
∣x∣−x2∣x−5∣=0
Separate the equation into 4 possible cases
x−x2(x−5)=0,x≥0,x−5≥0x−x2(−(x−5))=0,x≥0,x−5<0−x−x2(x−5)=0,x<0,x−5≥0−x−x2(−(x−5))=0,x<0,x−5<0
Solve the equation
More Steps

Evaluate
x−x2(x−5)=0
Calculate
More Steps

Evaluate
−x2(x−5)
Apply the distributive property
−x2×x−(−x2×5)
Multiply the terms
−x3−(−x2×5)
Use the commutative property to reorder the terms
−x3−(−5x2)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−x3+5x2
x−x3+5x2=0
Factor the expression
x(1−x2+5x)=0
Separate the equation into 2 possible cases
x=01−x2+5x=0
Solve the equation
More Steps

Evaluate
1−x2+5x=0
Rewrite in standard form
−x2+5x+1=0
Multiply both sides
x2−5x−1=0
Substitute a=1,b=−5 and c=−1 into the quadratic formula x=2a−b±b2−4ac
x=25±(−5)2−4(−1)
Simplify the expression
x=25±29
Separate the equation into 2 possible cases
x=25+29x=25−29
x=0x=25+29x=25−29
x=0x=25+29x=25−29,x≥0,x−5≥0x−x2(−(x−5))=0,x≥0,x−5<0−x−x2(x−5)=0,x<0,x−5≥0−x−x2(−(x−5))=0,x<0,x−5<0
Solve the inequality
More Steps

Evaluate
x−5≥0
Move the constant to the right side
x≥0+5
Removing 0 doesn't change the value,so remove it from the expression
x≥5
x=0x=25+29x=25−29,x≥0,x≥5x−x2(−(x−5))=0,x≥0,x−5<0−x−x2(x−5)=0,x<0,x−5≥0−x−x2(−(x−5))=0,x<0,x−5<0
Solve the equation
More Steps

Evaluate
x−x2(−(x−5))=0
Calculate
x−x2(−x+5)=0
Calculate
More Steps

Evaluate
−x2(−x+5)
Apply the distributive property
−x2(−x)−x2×5
Multiply the terms
x3−x2×5
Use the commutative property to reorder the terms
x3−5x2
x+x3−5x2=0
Factor the expression
x(1+x2−5x)=0
Separate the equation into 2 possible cases
x=01+x2−5x=0
Solve the equation
More Steps

Evaluate
1+x2−5x=0
Rewrite in standard form
x2−5x+1=0
Substitute a=1,b=−5 and c=1 into the quadratic formula x=2a−b±b2−4ac
x=25±(−5)2−4
Simplify the expression
x=25±21
Separate the equation into 2 possible cases
x=25+21x=25−21
x=0x=25+21x=25−21
x=0x=25+29x=25−29,x≥0,x≥5x=0x=25+21x=25−21,x≥0,x−5<0−x−x2(x−5)=0,x<0,x−5≥0−x−x2(−(x−5))=0,x<0,x−5<0
Solve the inequality
More Steps

Evaluate
x−5<0
Move the constant to the right side
x<0+5
Removing 0 doesn't change the value,so remove it from the expression
x<5
x=0x=25+29x=25−29,x≥0,x≥5x=0x=25+21x=25−21,x≥0,x<5−x−x2(x−5)=0,x<0,x−5≥0−x−x2(−(x−5))=0,x<0,x−5<0
Solve the equation
More Steps

Evaluate
−x−x2(x−5)=0
Calculate
More Steps

Evaluate
−x2(x−5)
Apply the distributive property
−x2×x−(−x2×5)
Multiply the terms
−x3−(−x2×5)
Use the commutative property to reorder the terms
−x3−(−5x2)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−x3+5x2
−x−x3+5x2=0
Factor the expression
−x(1+x2−5x)=0
Separate the equation into 2 possible cases
−x=01+x2−5x=0
Change the signs on both sides of the equation
x=01+x2−5x=0
Solve the equation
More Steps

Evaluate
1+x2−5x=0
Rewrite in standard form
x2−5x+1=0
Substitute a=1,b=−5 and c=1 into the quadratic formula x=2a−b±b2−4ac
x=25±(−5)2−4
Simplify the expression
x=25±21
Separate the equation into 2 possible cases
x=25+21x=25−21
x=0x=25+21x=25−21
x=0x=25+29x=25−29,x≥0,x≥5x=0x=25+21x=25−21,x≥0,x<5x=0x=25+21x=25−21,x<0,x−5≥0−x−x2(−(x−5))=0,x<0,x−5<0
Solve the inequality
More Steps

Evaluate
x−5≥0
Move the constant to the right side
x≥0+5
Removing 0 doesn't change the value,so remove it from the expression
x≥5
x=0x=25+29x=25−29,x≥0,x≥5x=0x=25+21x=25−21,x≥0,x<5x=0x=25+21x=25−21,x<0,x≥5−x−x2(−(x−5))=0,x<0,x−5<0
Solve the equation
More Steps

Evaluate
−x−x2(−(x−5))=0
Calculate
−x−x2(−x+5)=0
Calculate
More Steps

Evaluate
−x2(−x+5)
Apply the distributive property
−x2(−x)−x2×5
Multiply the terms
x3−x2×5
Use the commutative property to reorder the terms
x3−5x2
−x+x3−5x2=0
Factor the expression
−x(1−x2+5x)=0
Separate the equation into 2 possible cases
−x=01−x2+5x=0
Change the signs on both sides of the equation
x=01−x2+5x=0
Solve the equation
More Steps

Evaluate
1−x2+5x=0
Rewrite in standard form
−x2+5x+1=0
Multiply both sides
x2−5x−1=0
Substitute a=1,b=−5 and c=−1 into the quadratic formula x=2a−b±b2−4ac
x=25±(−5)2−4(−1)
Simplify the expression
x=25±29
Separate the equation into 2 possible cases
x=25+29x=25−29
x=0x=25+29x=25−29
x=0x=25+29x=25−29,x≥0,x≥5x=0x=25+21x=25−21,x≥0,x<5x=0x=25+21x=25−21,x<0,x≥5x=0x=25+29x=25−29,x<0,x−5<0
Solve the inequality
More Steps

Evaluate
x−5<0
Move the constant to the right side
x<0+5
Removing 0 doesn't change the value,so remove it from the expression
x<5
x=0x=25+29x=25−29,x≥0,x≥5x=0x=25+21x=25−21,x≥0,x<5x=0x=25+21x=25−21,x<0,x≥5x=0x=25+29x=25−29,x<0,x<5
Find the intersection
x=25+29x=0x=25+21x=25−21,x≥0,x<5x=0x=25+21x=25−21,x<0,x≥5x=0x=25+29x=25−29,x<0,x<5
Find the intersection
x=25+29x=0x=25+21x=25−21x=0x=25+21x=25−21,x<0,x≥5x=0x=25+29x=25−29,x<0,x<5
Find the intersection
x=25+29x=0x=25+21x=25−21x∈∅x=0x=25+29x=25−29,x<0,x<5
Find the intersection
x=25+29x=0x=25+21x=25−21x∈∅x=25−29
Find the union
x=25+29x=0x=25+21x=25−21x=25−29
Solution
x1=25−29,x2=0,x3=25−21,x4=25+21,x5=25+29
Alternative Form
x1≈−0.192582,x2=0,x3≈0.208712,x4≈4.791288,x5≈5.192582
Show Solution
