Question
Solve the inequality
x∈(−∞,−22261)∪(22261,+∞)
Evaluate
∣x∣<42∣x∣×53∣x∣×1
Multiply the terms
More Steps

Evaluate
42∣x∣×53∣x∣×1
Rewrite the expression
42∣x∣×53∣x∣
Multiply the terms
2226∣x∣∣x∣
Multiply the terms
2226x2
∣x∣<2226x2
Rearrange the terms
∣x∣−2226x2<0
Separate the inequality into 2 possible cases
x−2226x2<0,x≥0−x−2226x2<0,x<0
Evaluate
More Steps

Evaluate
x−2226x2<0
Evaluate
x2−22261x>0
Add the same value to both sides
x2−22261x+445221>445221
Evaluate
(x−44521)2>445221
Take the 2-th root on both sides of the inequality
(x−44521)2>445221
Calculate
x−44521>44521
Separate the inequality into 2 possible cases
x−44521>44521x−44521<−44521
Calculate
More Steps

Evaluate
x−44521>44521
Move the constant to the right side
x>44521+44521
Add the numbers
x>22261
x>22261x−44521<−44521
Cancel equal terms on both sides of the expression
x>22261x<0
Find the union
x∈(−∞,0)∪(22261,+∞)
x∈(−∞,0)∪(22261,+∞),x≥0−x−2226x2<0,x<0
Evaluate
More Steps

Evaluate
−x−2226x2<0
Evaluate
x2+22261x>0
Add the same value to both sides
x2+22261x+445221>445221
Evaluate
(x+44521)2>445221
Take the 2-th root on both sides of the inequality
(x+44521)2>445221
Calculate
x+44521>44521
Separate the inequality into 2 possible cases
x+44521>44521x+44521<−44521
Cancel equal terms on both sides of the expression
x>0x+44521<−44521
Calculate
More Steps

Evaluate
x+44521<−44521
Move the constant to the right side
x<−44521−44521
Subtract the numbers
x<−22261
x>0x<−22261
Find the union
x∈(−∞,−22261)∪(0,+∞)
x∈(−∞,0)∪(22261,+∞),x≥0x∈(−∞,−22261)∪(0,+∞),x<0
Find the intersection
x>22261x∈(−∞,−22261)∪(0,+∞),x<0
Find the intersection
x>22261x<−22261
Solution
x∈(−∞,−22261)∪(22261,+∞)
Show Solution
