Question
Solve the equation
x1=23−5,x2=23+5
Alternative Form
x1≈0.381966,x2≈2.618034
Evaluate
∣x−1∣=x
Find the domain
∣x−1∣=x,x≥0
Swap the sides
x=∣x−1∣
Raise both sides of the equation to the 2-th power to eliminate the isolated 2-th root
(x)2=∣x−1∣2
Evaluate the power
x=x2−2x+1
Move the expression to the left side
x−(x2−2x+1)=0
Subtract the terms
More Steps

Evaluate
x−(x2−2x+1)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
x−x2+2x−1
Add the terms
More Steps

Evaluate
x+2x
Collect like terms by calculating the sum or difference of their coefficients
(1+2)x
Add the numbers
3x
3x−x2−1
3x−x2−1=0
Rewrite in standard form
−x2+3x−1=0
Multiply both sides
x2−3x+1=0
Substitute a=1,b=−3 and c=1 into the quadratic formula x=2a−b±b2−4ac
x=23±(−3)2−4
Simplify the expression
More Steps

Evaluate
(−3)2−4
Rewrite the expression
32−4
Evaluate the power
9−4
Subtract the numbers
5
x=23±5
Separate the equation into 2 possible cases
x=23+5x=23−5
Check if the solution is in the defined range
x=23+5x=23−5,x≥0
Find the intersection of the solution and the defined range
x=23+5x=23−5
Check the solution
More Steps

Check the solution
23+5−1=23+5
Simplify
1.618034=1.618034
Evaluate
true
x=23+5x=23−5
Check the solution
More Steps

Check the solution
23−5−1=23−5
Simplify
0.618034=0.618034
Evaluate
true
x=23+5x=23−5
Solution
x1=23−5,x2=23+5
Alternative Form
x1≈0.381966,x2≈2.618034
Show Solution
