Question
Solve the equation
x1=0,x2=5
Evaluate
∣x−1∣×2∣x−4∣=8
Multiply the terms
More Steps

Evaluate
∣x−1∣×2∣x−4∣
Multiply the first two terms
2∣x−1∣∣x−4∣
Multiply the terms
2∣(x−1)(x−4)∣
2∣(x−1)(x−4)∣=8
Divide both sides
22∣(x−1)(x−4)∣=28
Divide the numbers
∣(x−1)(x−4)∣=28
Divide the numbers
More Steps

Evaluate
28
Reduce the numbers
14
Calculate
4
∣(x−1)(x−4)∣=4
Separate the equation into 2 possible cases
(x−1)(x−4)=4(x−1)(x−4)=−4
Solve the equation for x
More Steps

Evaluate
(x−1)(x−4)=4
Expand the expression
More Steps

Evaluate
(x−1)(x−4)
Apply the distributive property
x×x−x×4−x−(−4)
Multiply the terms
x2−x×4−x−(−4)
Use the commutative property to reorder the terms
x2−4x−x−(−4)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
x2−4x−x+4
Subtract the terms
x2−5x+4
x2−5x+4=4
Cancel equal terms on both sides of the expression
x2−5x=0
Factor the expression
More Steps

Evaluate
x2−5x
Rewrite the expression
x×x−x×5
Factor out x from the expression
x(x−5)
x(x−5)=0
When the product of factors equals 0,at least one factor is 0
x=0x−5=0
Solve the equation for x
More Steps

Evaluate
x−5=0
Move the constant to the right-hand side and change its sign
x=0+5
Removing 0 doesn't change the value,so remove it from the expression
x=5
x=0x=5
x=0x=5(x−1)(x−4)=−4
Solve the equation for x
More Steps

Evaluate
(x−1)(x−4)=−4
Expand the expression
More Steps

Evaluate
(x−1)(x−4)
Apply the distributive property
x×x−x×4−x−(−4)
Multiply the terms
x2−x×4−x−(−4)
Use the commutative property to reorder the terms
x2−4x−x−(−4)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
x2−4x−x+4
Subtract the terms
x2−5x+4
x2−5x+4=−4
Move the expression to the left side
x2−5x+4−(−4)=0
Subtract the numbers
More Steps

Evaluate
4−(−4)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
4+4
Add the numbers
8
x2−5x+8=0
Substitute a=1,b=−5 and c=8 into the quadratic formula x=2a−b±b2−4ac
x=25±(−5)2−4×8
Simplify the expression
More Steps

Evaluate
(−5)2−4×8
Multiply the numbers
(−5)2−32
Rewrite the expression
52−32
Evaluate the power
25−32
Subtract the numbers
−7
x=25±−7
The expression is undefined in the set of real numbers
x∈/R
x=0x=5x∈/R
Find the union
x=0x=5
Solution
x1=0,x2=5
Show Solution
