Question
Simplify the expression
−32s4−2s3
Evaluate
s×s(−4s×4s×2−2s)
Multiply
More Steps

Multiply the terms
−4s×4s×2
Multiply the terms
More Steps

Evaluate
4×4×2
Multiply the terms
16×2
Multiply the numbers
32
−32s×s
Multiply the terms
−32s2
s×s(−32s2−2s)
Multiply the terms
s2(−32s2−2s)
Apply the distributive property
s2(−32s2)−s2×2s
Multiply the terms
More Steps

Evaluate
s2(−32s2)
Use the commutative property to reorder the terms
−32s2×s2
Multiply the terms
More Steps

Evaluate
s2×s2
Use the product rule an×am=an+m to simplify the expression
s2+2
Add the numbers
s4
−32s4
−32s4−s2×2s
Solution
More Steps

Evaluate
s2×2s
Use the commutative property to reorder the terms
2s2×s
Multiply the terms
More Steps

Evaluate
s2×s
Use the product rule an×am=an+m to simplify the expression
s2+1
Add the numbers
s3
2s3
−32s4−2s3
Show Solution

Factor the expression
−2s3(16s+1)
Evaluate
s×s(−4s×4s×2−2s)
Multiply
More Steps

Multiply the terms
−4s×4s×2
Multiply the terms
More Steps

Evaluate
4×4×2
Multiply the terms
16×2
Multiply the numbers
32
−32s×s
Multiply the terms
−32s2
s×s(−32s2−2s)
Multiply the terms
s2(−32s2−2s)
Factor the expression
More Steps

Evaluate
−32s2−2s
Rewrite the expression
−2s×16s−2s
Factor out −2s from the expression
−2s(16s+1)
s2(−2s)(16s+1)
Solution
−2s3(16s+1)
Show Solution

Find the roots
s1=−161,s2=0
Alternative Form
s1=−0.0625,s2=0
Evaluate
s×s(−4s×4s×2−2s)
To find the roots of the expression,set the expression equal to 0
s×s(−4s×4s×2−2s)=0
Multiply
More Steps

Multiply the terms
−4s×4s×2
Multiply the terms
More Steps

Evaluate
4×4×2
Multiply the terms
16×2
Multiply the numbers
32
−32s×s
Multiply the terms
−32s2
s×s(−32s2−2s)=0
Multiply the terms
s2(−32s2−2s)=0
Separate the equation into 2 possible cases
s2=0−32s2−2s=0
The only way a power can be 0 is when the base equals 0
s=0−32s2−2s=0
Solve the equation
More Steps

Evaluate
−32s2−2s=0
Factor the expression
More Steps

Evaluate
−32s2−2s
Rewrite the expression
−2s×16s−2s
Factor out −2s from the expression
−2s(16s+1)
−2s(16s+1)=0
When the product of factors equals 0,at least one factor is 0
−2s=016s+1=0
Solve the equation for s
More Steps

Evaluate
−2s=0
Change the signs on both sides of the equation
2s=0
Rewrite the expression
s=0
s=016s+1=0
Solve the equation for s
More Steps

Evaluate
16s+1=0
Move the constant to the right-hand side and change its sign
16s=0−1
Removing 0 doesn't change the value,so remove it from the expression
16s=−1
Divide both sides
1616s=16−1
Divide the numbers
s=16−1
Use b−a=−ba=−ba to rewrite the fraction
s=−161
s=0s=−161
s=0s=0s=−161
Find the union
s=0s=−161
Solution
s1=−161,s2=0
Alternative Form
s1=−0.0625,s2=0
Show Solution
