Question
Simplify the expression
22jch238395127k
Evaluate
1111113k×311k×1÷(j×1×ch×11kh×18)
Multiply the terms
More Steps

Multiply the terms
1111113k×311k×1
Rewrite the expression
1111113k×311k
Multiply the terms
345556143k×k
Multiply the terms
345556143k2
345556143k2÷(j×1×ch×11kh×18)
Multiply the terms
More Steps

Multiply the terms
j×1×ch×11kh×18
Rewrite the expression
jch×11kh×18
Multiply the terms
jch2×11k×18
Multiply the terms
jch2×198k
Use the commutative property to reorder the terms
198jch2k
345556143k2÷198jch2k
Rewrite the expression
198jch2k345556143k2
Use the product rule aman=an−m to simplify the expression
198jch2345556143k2−1
Reduce the fraction
198jch2345556143k
Solution
22jch238395127k
Show Solution

Find the excluded values
j=0,c=0,h=0,k=0
Evaluate
1111113k×311k×1÷(j×1×ch×11kh×18)
To find the excluded values,set the denominators equal to 0
jchkh=0
Multiply the terms
jch2k=0
Separate the equation into 4 possible cases
j=0c=0h2=0k=0
The only way a power can be 0 is when the base equals 0
j=0c=0h=0k=0
Solution
j=0,c=0,h=0,k=0
Show Solution
