Question
Simplify the expression
sec9(θ)×Sdthηsin7(θ)
Evaluate
S(1×tan(θ))7sec2(θ)×dthη
Any expression multiplied by 1 remains the same
Stan7(θ)sec2(θ)×dthη
Calculate
More Steps

Evaluate
tan7(θ)
Transform the expression
(cos(θ)sin(θ))7
Simplify
cos7(θ)sin7(θ)
S×cos7(θ)sin7(θ)×sec2(θ)×dthη
Calculate
More Steps

Evaluate
sec2(θ)
Transform the expression
(cos(θ)1)2
Simplify
cos2(θ)1
S×cos7(θ)sin7(θ)×cos2(θ)1×dthη
Calculate
cos9(θ)Ssin7(θ)×dthη
Rewrite the expression
cos9(θ)ηhtdsin7(θ)×S
Rewrite the expression
sin7(θ)cos−9(θ)×ηhtdS
Rewrite the expression
Sdthηcos−9(θ)sin7(θ)
Rearrange the terms
cos−9(θ)×Sdthηsin7(θ)
Rewrite the expression
cos−9(θ)sin7(θ)×Sdthη
Rewrite the expression
ηhtdSsin7(θ)cos−9(θ)
Simplify
ηhtdSsin7(θ)sec9(θ)
Rewrite the expression
Sdthηsec9(θ)sin7(θ)
Solution
sec9(θ)×Sdthηsin7(θ)
Show Solution
