Question
Simplify the expression
60R4Hou88211iQan
Evaluate
Qian×275÷(35R2×2Hou×315)÷(30R2×2)
Multiply the terms
More Steps

Multiply the terms
Qian×275
Use the commutative property to reorder the terms
iQan×275
Multiply the numbers
275iQan
275iQan÷(35R2×2Hou×315)÷(30R2×2)
Multiply the terms
More Steps

Multiply the terms
35R2×2Hou×315
Multiply the terms
More Steps

Evaluate
35×2×315
Multiply the terms
70×315
Multiply the numbers
22050
22050R2Hou
275iQan÷22050R2Hou÷(30R2×2)
Divide the terms
More Steps

Evaluate
275iQan÷22050R2Hou
Rewrite the expression
22050R2Hou275iQan
Divide the terms
More Steps

Evaluate
22050275i
Rewrite the expression
2205025×11i
Cancel out the common factor 25
88211i
Reduce the fraction
88211i
R2Hou88211iQan
R2Hou88211iQan÷(30R2×2)
Multiply the terms
R2Hou88211iQan÷60R2
Multiply by the reciprocal
R2Hou88211iQan×60R21
Multiply the terms
R2Hou×60R288211iQan
Solution
More Steps

Evaluate
R2Hou×60R2
Use the commutative property to reorder the terms
60R2HouR2
Multiply the terms
More Steps

Evaluate
R2×R2
Use the product rule an×am=an+m to simplify the expression
R2+2
Add the numbers
R4
60R4Hou
60R4Hou88211iQan
Show Solution

Find the excluded values
R=0,H=0,o=0,u=0
Evaluate
Qian×275÷(35R2×2Hou×315)÷(30R2×2)
To find the excluded values,set the denominators equal to 0
R2Hou=030R2×2=0
Solve the equations
More Steps

Evaluate
R2Hou=0
Separate the equation into 4 possible cases
R2=0H=0o=0u=0
The only way a power can be 0 is when the base equals 0
R=0H=0o=0u=0
Find the union
H=0R=0o=0u=0
R=0H=0o=0u=030R2×2=0
Solve the equations
More Steps

Evaluate
30R2×2=0
Multiply the terms
60R2=0
Rewrite the expression
R2=0
The only way a power can be 0 is when the base equals 0
R=0
R=0H=0o=0u=0R=0
Solution
R=0,H=0,o=0,u=0
Show Solution
