Question
Simplify the expression
270j12+51840j11+9j4+1728j3
Evaluate
(−5j4×9j3×2j−3)(−3j4−8j2×9j×8)
Multiply
More Steps

Multiply the terms
−5j4×9j3×2j
Multiply the terms
More Steps

Evaluate
5×9×2
Multiply the terms
45×2
Multiply the numbers
90
−90j4×j3×j
Multiply the terms with the same base by adding their exponents
−90j4+3+1
Add the numbers
−90j8
(−90j8−3)(−3j4−8j2×9j×8)
Multiply
More Steps

Multiply the terms
8j2×9j×8
Multiply the terms
More Steps

Evaluate
8×9×8
Multiply the terms
72×8
Multiply the numbers
576
576j2×j
Multiply the terms with the same base by adding their exponents
576j2+1
Add the numbers
576j3
(−90j8−3)(−3j4−576j3)
Apply the distributive property
−90j8(−3j4)−(−90j8×576j3)−3(−3j4)−(−3×576j3)
Multiply the terms
More Steps

Evaluate
−90j8(−3j4)
Multiply the numbers
More Steps

Evaluate
−90(−3)
Multiplying or dividing an even number of negative terms equals a positive
90×3
Multiply the numbers
270
270j8×j4
Multiply the terms
More Steps

Evaluate
j8×j4
Use the product rule an×am=an+m to simplify the expression
j8+4
Add the numbers
j12
270j12
270j12−(−90j8×576j3)−3(−3j4)−(−3×576j3)
Multiply the terms
More Steps

Evaluate
−90j8×576j3
Multiply the numbers
−51840j8×j3
Multiply the terms
More Steps

Evaluate
j8×j3
Use the product rule an×am=an+m to simplify the expression
j8+3
Add the numbers
j11
−51840j11
270j12−(−51840j11)−3(−3j4)−(−3×576j3)
Multiply the numbers
More Steps

Evaluate
−3(−3)
Multiplying or dividing an even number of negative terms equals a positive
3×3
Multiply the numbers
9
270j12−(−51840j11)+9j4−(−3×576j3)
Multiply the numbers
270j12−(−51840j11)+9j4−(−1728j3)
Solution
270j12+51840j11+9j4+1728j3
Show Solution

Factor the expression
9j3(30j8+1)(j+192)
Evaluate
(−5j4×9j3×2j−3)(−3j4−8j2×9j×8)
Multiply
More Steps

Multiply the terms
−5j4×9j3×2j
Multiply the terms
More Steps

Evaluate
5×9×2
Multiply the terms
45×2
Multiply the numbers
90
−90j4×j3×j
Multiply the terms with the same base by adding their exponents
−90j4+3+1
Add the numbers
−90j8
(−90j8−3)(−3j4−8j2×9j×8)
Multiply
More Steps

Multiply the terms
8j2×9j×8
Multiply the terms
More Steps

Evaluate
8×9×8
Multiply the terms
72×8
Multiply the numbers
576
576j2×j
Multiply the terms with the same base by adding their exponents
576j2+1
Add the numbers
576j3
(−90j8−3)(−3j4−576j3)
Factor the expression
−3(30j8+1)(−3j4−576j3)
Factor the expression
More Steps

Evaluate
−3j4−576j3
Rewrite the expression
−3j3×j−3j3×192
Factor out −3j3 from the expression
−3j3(j+192)
−3(30j8+1)(−3j3)(j+192)
Solution
9j3(30j8+1)(j+192)
Show Solution

Find the roots
j1=−192,j2=0,j3=−6082040×270002+1440×2700022+6082040×270002−1440×2700022i,j4=6082040×270002+1440×2700022−6082040×270002−1440×2700022i
Alternative Form
j1=−192,j2=0,j3≈−0.603914+0.250149i,j4≈0.603914−0.250149i
Evaluate
(−5j4×9j3×2j−3)(−3j4−8j2×9j×8)
To find the roots of the expression,set the expression equal to 0
(−5j4×9j3×2j−3)(−3j4−8j2×9j×8)=0
Multiply
More Steps

Multiply the terms
−5j4×9j3×2j
Multiply the terms
More Steps

Evaluate
5×9×2
Multiply the terms
45×2
Multiply the numbers
90
−90j4×j3×j
Multiply the terms with the same base by adding their exponents
−90j4+3+1
Add the numbers
−90j8
(−90j8−3)(−3j4−8j2×9j×8)=0
Multiply
More Steps

Multiply the terms
8j2×9j×8
Multiply the terms
More Steps

Evaluate
8×9×8
Multiply the terms
72×8
Multiply the numbers
576
576j2×j
Multiply the terms with the same base by adding their exponents
576j2+1
Add the numbers
576j3
(−90j8−3)(−3j4−576j3)=0
Change the sign
(90j8+3)(−3j4−576j3)=0
Separate the equation into 2 possible cases
90j8+3=0−3j4−576j3=0
Solve the equation
More Steps

Evaluate
90j8+3=0
Move the constant to the right-hand side and change its sign
90j8=0−3
Removing 0 doesn't change the value,so remove it from the expression
90j8=−3
Divide both sides
9090j8=90−3
Divide the numbers
j8=90−3
Divide the numbers
More Steps

Evaluate
90−3
Cancel out the common factor 3
30−1
Use b−a=−ba=−ba to rewrite the fraction
−301
j8=−301
Take the root of both sides of the equation and remember to use both positive and negative roots
j=±8−301
Simplify the expression
More Steps

Evaluate
8−301
To take a root of a fraction,take the root of the numerator and denominator separately
8−3081
Simplify the radical expression
8−301
Simplify the radical expression
282040+14402+282040−14402i1
Multiply by the Conjugate
(282040+14402+282040−14402i)(282040+14402−282040−14402i)282040+14402−282040−14402i
Calculate
430282040+14402−282040−14402i
Simplify
243082040+14402−243082040−14402i
Rearrange the numbers
6082040×270002+1440×2700022−243082040−14402i
Rearrange the numbers
6082040×270002+1440×2700022−6082040×270002−1440×2700022i
j=±6082040×270002+1440×2700022−6082040×270002−1440×2700022i
Separate the equation into 2 possible cases
j=6082040×270002+1440×2700022−6082040×270002−1440×2700022ij=−6082040×270002+1440×2700022+6082040×270002−1440×2700022i
j=6082040×270002+1440×2700022−6082040×270002−1440×2700022ij=−6082040×270002+1440×2700022+6082040×270002−1440×2700022i−3j4−576j3=0
Solve the equation
More Steps

Evaluate
−3j4−576j3=0
Rewrite the expression
−3a4−12ia3b+18a2b2+12iab3−3b4−576a3−1728ia2b+1728ab2+576ib3=0
Factor the expression
−3j3(j+192)=0
Divide both sides
j3(j+192)=0
Separate the equation into 2 possible cases
j3=0j+192=0
The only way a power can be 0 is when the base equals 0
j=0j+192=0
Solve the equation
More Steps

Evaluate
j+192=0
Move the constant to the right-hand side and change its sign
j=0−192
Removing 0 doesn't change the value,so remove it from the expression
j=−192
j=0j=−192
j=6082040×270002+1440×2700022−6082040×270002−1440×2700022ij=−6082040×270002+1440×2700022+6082040×270002−1440×2700022ij=0j=−192
Solution
j1=−192,j2=0,j3=−6082040×270002+1440×2700022+6082040×270002−1440×2700022i,j4=6082040×270002+1440×2700022−6082040×270002−1440×2700022i
Alternative Form
j1=−192,j2=0,j3≈−0.603914+0.250149i,j4≈0.603914−0.250149i
Show Solution
