Question
Simplify the expression
−1008y6+4y
Evaluate
(−8y3×7y2×2y×9)−(−4y×1)
Multiply
More Steps

Multiply the terms
−8y3×7y2×2y×9
Multiply the terms
More Steps

Evaluate
8×7×2×9
Multiply the terms
56×2×9
Multiply the terms
112×9
Multiply the numbers
1008
−1008y3×y2×y
Multiply the terms with the same base by adding their exponents
−1008y3+2+1
Add the numbers
−1008y6
(−1008y6)−(−4y×1)
Remove the parentheses
−1008y6−(−4y×1)
Multiply the terms
−1008y6−(−4y)
Solution
−1008y6+4y
Show Solution

Factor the expression
−4y(252y5−1)
Evaluate
(−8y3×7y2×2y×9)−(−4y×1)
Multiply
More Steps

Multiply the terms
−8y3×7y2×2y×9
Multiply the terms
More Steps

Evaluate
8×7×2×9
Multiply the terms
56×2×9
Multiply the terms
112×9
Multiply the numbers
1008
−1008y3×y2×y
Multiply the terms with the same base by adding their exponents
−1008y3+2+1
Add the numbers
−1008y6
−1008y6−(−4y×1)
Multiply the terms
−1008y6−(−4y)
Rewrite the expression
−1008y6+4y
Rewrite the expression
−4y×252y5+4y
Solution
−4y(252y5−1)
Show Solution

Find the roots
y1=0,y2=25252524
Alternative Form
y1=0,y2≈0.330918
Evaluate
(−8y3×7y2×2y×9)−(−4y×1)
To find the roots of the expression,set the expression equal to 0
(−8y3×7y2×2y×9)−(−4y×1)=0
Multiply
More Steps

Multiply the terms
−8y3×7y2×2y×9
Multiply the terms
More Steps

Evaluate
8×7×2×9
Multiply the terms
56×2×9
Multiply the terms
112×9
Multiply the numbers
1008
−1008y3×y2×y
Multiply the terms with the same base by adding their exponents
−1008y3+2+1
Add the numbers
−1008y6
(−1008y6)−(−4y×1)=0
Remove the parentheses
−1008y6−(−4y×1)=0
Multiply the terms
−1008y6−(−4y)=0
Rewrite the expression
−1008y6+4y=0
Factor the expression
4y(−252y5+1)=0
Divide both sides
y(−252y5+1)=0
Separate the equation into 2 possible cases
y=0−252y5+1=0
Solve the equation
More Steps

Evaluate
−252y5+1=0
Move the constant to the right-hand side and change its sign
−252y5=0−1
Removing 0 doesn't change the value,so remove it from the expression
−252y5=−1
Change the signs on both sides of the equation
252y5=1
Divide both sides
252252y5=2521
Divide the numbers
y5=2521
Take the 5-th root on both sides of the equation
5y5=52521
Calculate
y=52521
Simplify the root
More Steps

Evaluate
52521
To take a root of a fraction,take the root of the numerator and denominator separately
525251
Simplify the radical expression
52521
Multiply by the Conjugate
5252×5252452524
Multiply the numbers
25252524
y=25252524
y=0y=25252524
Solution
y1=0,y2=25252524
Alternative Form
y1=0,y2≈0.330918
Show Solution
