Question
Simplify the expression
61n5−21n4−34n3−201n2+203n+52
Evaluate
(31n2×2n−51)(41n2−43n−2)
Multiply
More Steps

Evaluate
31n2×2n
Multiply the numbers
32n2×n
Multiply the terms with the same base by adding their exponents
32n2+1
Add the numbers
32n3
(32n3−51)(41n2−43n−2)
Apply the distributive property
32n3×41n2−32n3×43n−32n3×2−51×41n2−(−51×43n)−(−51×2)
Multiply the terms
More Steps

Evaluate
32n3×41n2
Multiply the numbers
More Steps

Evaluate
32×41
Reduce the numbers
31×21
To multiply the fractions,multiply the numerators and denominators separately
3×21
Multiply the numbers
61
61n3×n2
Multiply the terms
More Steps

Evaluate
n3×n2
Use the product rule an×am=an+m to simplify the expression
n3+2
Add the numbers
n5
61n5
61n5−32n3×43n−32n3×2−51×41n2−(−51×43n)−(−51×2)
Multiply the terms
More Steps

Evaluate
32n3×43n
Multiply the numbers
More Steps

Evaluate
32×43
Reduce the numbers
31×23
Reduce the numbers
1×21
Multiply the numbers
21
21n3×n
Multiply the terms
More Steps

Evaluate
n3×n
Use the product rule an×am=an+m to simplify the expression
n3+1
Add the numbers
n4
21n4
61n5−21n4−32n3×2−51×41n2−(−51×43n)−(−51×2)
Multiply the numbers
More Steps

Evaluate
32×2
Multiply the numbers
32×2
Multiply the numbers
34
61n5−21n4−34n3−51×41n2−(−51×43n)−(−51×2)
Multiply the numbers
More Steps

Evaluate
−51×41
To multiply the fractions,multiply the numerators and denominators separately
−5×41
Multiply the numbers
−201
61n5−21n4−34n3−201n2−(−51×43n)−(−51×2)
Multiply the numbers
More Steps

Evaluate
−51×43
To multiply the fractions,multiply the numerators and denominators separately
−5×43
Multiply the numbers
−203
61n5−21n4−34n3−201n2−(−203n)−(−51×2)
Multiply the numbers
61n5−21n4−34n3−201n2−(−203n)−(−52)
Solution
61n5−21n4−34n3−201n2+203n+52
Show Solution

Factor the expression
601(10n3−3)(n2−3n−8)
Evaluate
(31n2×2n−51)(41n2−43n−2)
Multiply
More Steps

Evaluate
31n2×2n
Multiply the numbers
32n2×n
Multiply the terms with the same base by adding their exponents
32n2+1
Add the numbers
32n3
(32n3−51)(41n2−43n−2)
Factor the expression
151(10n3−3)(41n2−43n−2)
Factor the expression
151(10n3−3)×41(n2−3n−8)
Solution
601(10n3−3)(n2−3n−8)
Show Solution

Find the roots
n1=23−41,n2=103300,n3=23+41
Alternative Form
n1≈−1.701562,n2≈0.669433,n3≈4.701562
Evaluate
(31n2×2n−51)(41n2−43n−2)
To find the roots of the expression,set the expression equal to 0
(31n2×2n−51)(41n2−43n−2)=0
Multiply
More Steps

Multiply the terms
31n2×2n
Multiply the numbers
32n2×n
Multiply the terms with the same base by adding their exponents
32n2+1
Add the numbers
32n3
(32n3−51)(41n2−43n−2)=0
Separate the equation into 2 possible cases
32n3−51=041n2−43n−2=0
Solve the equation
More Steps

Evaluate
32n3−51=0
Move the constant to the right-hand side and change its sign
32n3=0+51
Add the terms
32n3=51
Multiply by the reciprocal
32n3×23=51×23
Multiply
n3=51×23
Multiply
More Steps

Evaluate
51×23
To multiply the fractions,multiply the numerators and denominators separately
5×23
Multiply the numbers
103
n3=103
Take the 3-th root on both sides of the equation
3n3=3103
Calculate
n=3103
Simplify the root
More Steps

Evaluate
3103
To take a root of a fraction,take the root of the numerator and denominator separately
31033
Multiply by the Conjugate
310×310233×3102
Simplify
310×310233×3100
Multiply the numbers
310×31023300
Multiply the numbers
103300
n=103300
n=10330041n2−43n−2=0
Solve the equation
More Steps

Evaluate
41n2−43n−2=0
Multiply both sides
4(41n2−43n−2)=4×0
Calculate
n2−3n−8=0
Substitute a=1,b=−3 and c=−8 into the quadratic formula n=2a−b±b2−4ac
n=23±(−3)2−4(−8)
Simplify the expression
More Steps

Evaluate
(−3)2−4(−8)
Multiply the numbers
(−3)2−(−32)
Rewrite the expression
32−(−32)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
32+32
Evaluate the power
9+32
Add the numbers
41
n=23±41
Separate the equation into 2 possible cases
n=23+41n=23−41
n=103300n=23+41n=23−41
Solution
n1=23−41,n2=103300,n3=23+41
Alternative Form
n1≈−1.701562,n2≈0.669433,n3≈4.701562
Show Solution
