Question
Simplify the expression
x256y6x3−4y3−1024y7x4+16y4x
Evaluate
(1÷4x−y)(x2×4xy×16y2)×4(4y3−1÷(16x3×1))
Remove the parentheses
(1÷4x−y)x2×4xy×16y2×4(4y3−1÷(16x3×1))
Rewrite the expression
(4x1−y)x2×4xy×16y2×4(4y3−1÷(16x3×1))
Subtract the terms
More Steps

Simplify
4x1−y
Reduce fractions to a common denominator
4x1−4xy×4x
Write all numerators above the common denominator
4x1−y×4x
Use the commutative property to reorder the terms
4x1−4yx
4x1−4yx×x2×4xy×16y2×4(4y3−1÷(16x3×1))
Multiply the terms
4x1−4yx×x2×4xy×16y2×4(4y3−1÷16x3)
Rewrite the expression
4x1−4yx×x2×4xy×16y2×4(4y3−16x31)
Subtract the terms
More Steps

Simplify
4y3−16x31
Reduce fractions to a common denominator
16x34y3×16x3−16x31
Write all numerators above the common denominator
16x34y3×16x3−1
Multiply the terms
16x364y3x3−1
4x1−4yx×x2×4xy×16y2×4×16x364y3x3−1
Multiply the terms with the same base by adding their exponents
4x1−4yx×x2+1×4y×16y2×4×16x364y3x3−1
Add the numbers
4x1−4yx×x3×4y×16y2×4×16x364y3x3−1
Multiply the terms
More Steps

Evaluate
4×16×4
Multiply the terms
64×4
Multiply the numbers
256
4x1−4yx×x3×256y×y2×16x364y3x3−1
Multiply the terms with the same base by adding their exponents
4x1−4yx×x3×256y1+2×16x364y3x3−1
Add the numbers
4x1−4yx×x3×256y3×16x364y3x3−1
Multiply the terms
More Steps

Multiply the terms
4x1−4yx×x3
Cancel out the common factor x
41−4yx×x2
Multiply the terms
4(1−4yx)x2
Multiply the terms
4x2(1−4yx)
4x2(1−4yx)×256y3×16x364y3x3−1
Multiply the terms
More Steps

Multiply the terms
4x2(1−4yx)×256
Cancel out the common factor 4
x2(1−4yx)×64
Use the commutative property to reorder the terms
64x2(1−4yx)
64x2(1−4yx)y3×16x364y3x3−1
Cancel out the common factor 16
4x2(1−4yx)y3×x364y3x3−1
Cancel out the common factor x2
4(1−4yx)y3×x64y3x3−1
Multiply the terms
x4(1−4yx)y3(64y3x3−1)
Solution
More Steps

Evaluate
4(1−4yx)y3(64y3x3−1)
Multiply the terms
More Steps

Evaluate
4(1−4yx)
Apply the distributive property
4×1−4×4yx
Any expression multiplied by 1 remains the same
4−4×4yx
Multiply the numbers
4−16yx
(4−16yx)y3(64y3x3−1)
Multiply the terms
More Steps

Evaluate
(4−16yx)y3
Apply the distributive property
4y3−16yxy3
Multiply the terms
4y3−16y4x
(4y3−16y4x)(64y3x3−1)
Apply the distributive property
4y3×64y3x3−4y3×1−16y4x×64y3x3−(−16y4x×1)
Multiply the terms
More Steps

Evaluate
4y3×64y3x3
Multiply the numbers
256y3×y3x3
Multiply the terms
256y6x3
256y6x3−4y3×1−16y4x×64y3x3−(−16y4x×1)
Any expression multiplied by 1 remains the same
256y6x3−4y3−16y4x×64y3x3−(−16y4x×1)
Multiply the terms
More Steps

Evaluate
−16y4x×64y3x3
Multiply the numbers
−1024y4xy3x3
Multiply the terms
−1024y7x×x3
Multiply the terms
−1024y7x4
256y6x3−4y3−1024y7x4−(−16y4x×1)
Any expression multiplied by 1 remains the same
256y6x3−4y3−1024y7x4−(−16y4x)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
256y6x3−4y3−1024y7x4+16y4x
x256y6x3−4y3−1024y7x4+16y4x
Show Solution

Find the excluded values
x=0
Evaluate
(1÷4x−y)(x2×4xy×16y2)×4(4y3−1÷(16x3×1))
To find the excluded values,set the denominators equal to 0
4x=016x3×1=0
Solve the equations
x=016x3×1=0
Solve the equations
More Steps

Evaluate
16x3×1=0
Multiply the terms
16x3=0
Rewrite the expression
x3=0
The only way a power can be 0 is when the base equals 0
x=0
x=0x=0
Solution
x=0
Show Solution
