Question
Simplify the expression
256x4y6−4x7y3−1024x3y7+16x6y4
Evaluate
(41x−y)(x2×4xy×16y2)×4(4y3−161x3×1)
Remove the parentheses
(41x−y)x2×4xy×16y2×4(4y3−161x3×1)
Multiply the terms
(41x−y)x2×4xy×16y2×4(4y3−161x3)
Multiply the terms with the same base by adding their exponents
(41x−y)x2+1×4y×16y2×4(4y3−161x3)
Add the numbers
(41x−y)x3×4y×16y2×4(4y3−161x3)
Multiply the terms
More Steps

Evaluate
4×16×4
Multiply the terms
64×4
Multiply the numbers
256
(41x−y)x3×256y×y2(4y3−161x3)
Multiply the terms with the same base by adding their exponents
(41x−y)x3×256y1+2(4y3−161x3)
Add the numbers
(41x−y)x3×256y3(4y3−161x3)
Use the commutative property to reorder the terms
(41x−y)×256x3y3(4y3−161x3)
Multiply the first two terms
256x3y3(41x−y)(4y3−161x3)
Multiply the terms
More Steps

Evaluate
256x3y3(41x−y)
Apply the distributive property
256x3y3×41x−256x3y3×y
Multiply the terms
More Steps

Evaluate
256x3y3×41x
Multiply the numbers
64x3y3x
Multiply the terms
64x4y3
64x4y3−256x3y3×y
Multiply the terms
More Steps

Evaluate
y3×y
Use the product rule an×am=an+m to simplify the expression
y3+1
Add the numbers
y4
64x4y3−256x3y4
(64x4y3−256x3y4)(4y3−161x3)
Apply the distributive property
64x4y3×4y3−64x4y3×161x3−256x3y4×4y3−(−256x3y4×161x3)
Multiply the terms
More Steps

Evaluate
64x4y3×4y3
Multiply the numbers
256x4y3×y3
Multiply the terms
More Steps

Evaluate
y3×y3
Use the product rule an×am=an+m to simplify the expression
y3+3
Add the numbers
y6
256x4y6
256x4y6−64x4y3×161x3−256x3y4×4y3−(−256x3y4×161x3)
Multiply the terms
More Steps

Evaluate
64x4y3×161x3
Multiply the numbers
More Steps

Evaluate
64×161
Reduce the numbers
4×1
Simplify
4
4x4y3x3
Multiply the terms
More Steps

Evaluate
x4×x3
Use the product rule an×am=an+m to simplify the expression
x4+3
Add the numbers
x7
4x7y3
256x4y6−4x7y3−256x3y4×4y3−(−256x3y4×161x3)
Multiply the terms
More Steps

Evaluate
−256x3y4×4y3
Multiply the numbers
−1024x3y4×y3
Multiply the terms
More Steps

Evaluate
y4×y3
Use the product rule an×am=an+m to simplify the expression
y4+3
Add the numbers
y7
−1024x3y7
256x4y6−4x7y3−1024x3y7−(−256x3y4×161x3)
Multiply the terms
More Steps

Evaluate
−256x3y4×161x3
Multiply the numbers
More Steps

Evaluate
−256×161
Reduce the numbers
−16×1
Simplify
−16
−16x3y4x3
Multiply the terms
More Steps

Evaluate
x3×x3
Use the product rule an×am=an+m to simplify the expression
x3+3
Add the numbers
x6
−16x6y4
256x4y6−4x7y3−1024x3y7−(−16x6y4)
Solution
256x4y6−4x7y3−1024x3y7+16x6y4
Show Solution

Factor the expression
4x3y3(x−4y)(16y2+4yx+x2)(4y−x)
Evaluate
(41x−y)(x2×4xy×16y2)×4(4y3−161x3×1)
Remove the parentheses
(41x−y)x2×4xy×16y2×4(4y3−161x3×1)
Multiply the terms
(41x−y)x2×4xy×16y2×4(4y3−161x3)
Multiply
More Steps

Multiply the terms
x2×4xy×16y2
Multiply the terms with the same base by adding their exponents
x2+1×4y×16y2
Add the numbers
x3×4y×16y2
Multiply the terms
x3×64y×y2
Multiply the terms with the same base by adding their exponents
x3×64y1+2
Add the numbers
x3×64y3
Use the commutative property to reorder the terms
64x3y3
(41x−y)×64x3y3×4(4y3−161x3)
Multiply the terms
(41x−y)×256x3y3(4y3−161x3)
Multiply the first two terms
256x3y3(41x−y)(4y3−161x3)
Factor the expression
256x3y3×41(x−4y)(4y3−161x3)
Factor the expression
More Steps

Evaluate
4y3−161x3
Rewrite the expression
161×64y3−161x3
Factor out 161 from the expression
161(64y3−x3)
Factor the expression
More Steps

Evaluate
64y3−x3
Calculate
64y3−16y2x+16y2x−4yx2+4x2y−x3
Rewrite the expression
16y2×4y−16y2x+4yx×4y−4yx×x+x2×4y−x2×x
Factor out 16y2 from the expression
16y2(4y−x)+4yx×4y−4yx×x+x2×4y−x2×x
Factor out 4yx from the expression
16y2(4y−x)+4yx(4y−x)+x2×4y−x2×x
Factor out x2 from the expression
16y2(4y−x)+4yx(4y−x)+x2(4y−x)
Factor out 4y−x from the expression
(16y2+4yx+x2)(4y−x)
161(16y2+4yx+x2)(4y−x)
256x3y3×41(x−4y)×161(16y2+4yx+x2)(4y−x)
Solution
4x3y3(x−4y)(16y2+4yx+x2)(4y−x)
Show Solution
